首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study assessed muscle-specific force in vivo following strength training in old age. Subjects were assigned to training (n = 9, age 74.3 +/- 3.5 yr; mean +/- SD) and control (n = 9, age 67.1 +/- 2 yr) groups. Leg-extension and leg-press exercises (2 sets of 10 repetitions at 80% of the 5 repetition maximum) were performed three times/wk for 14 wk. Vastus lateralis (VL) muscle fascicle force was calculated from maximal isometric voluntary knee extensor torque with superimposed stimuli, accounting for the patella tendon moment arm length, ultrasound-based measurements of muscle architecture, and antagonist cocontraction estimated from electromyographic activity. Physiological cross-sectional area (PCSA) was calculated from the ratio of muscle volume to fascicle length. Specific force was calculated by dividing fascicle force by PCSA. Fascicle force increased by 11%, from 847.9 +/- 365.3 N before to 939.3 +/- 347.8 N after training (P < 0.05). Due to a relatively greater increase in fascicle length (11%) than muscle volume (6%), PCSA remained unchanged (pretraining: 30.4 +/- 8.9 cm(2); posttraining: 29.1 +/- 8.4 cm(2); P > 0.05). Activation capacity and VL muscle root mean square electromyographic activity increased by 5 and 40%, respectively, after training (P < 0.05), indicating increased agonist neural drive, whereas antagonist cocontraction remained unchanged (P > 0.05). The VL muscle-specific force increased by 19%, from 27 +/- 6.3 N/cm(2) before to 32.1 +/- 7.4 N/cm(2) after training (P < 0.01), highlighting the effectiveness of strength training for increasing the intrinsic force-producing capacity of skeletal muscle in old age.  相似文献   

2.
Effect of aging on human muscle architecture.   总被引:7,自引:0,他引:7  
The effect of aging on human gastrocnemius medialis (GM) muscle architecture was evaluated by comparing morphometric measurements on 14 young (aged 27-42 yr) and on 16 older (aged 70-81 yr) physically active men, matched for height, body mass, and physical activity. GM muscle anatomic cross-sectional area (ACSA) and volume (Vol) were measured by computerized tomography, and GM fascicle length (Lf) and pennation angle (theta) were assessed by ultrasonography. GM physiological cross-sectional area (PCSA) was calculated as the ratio of Vol/Lf. In the elderly, ACSA and Vol were, respectively, 19.1% (P < 0.005) and 25.4% (P < 0.001) smaller than in the young adults. Also, Lf and were found to be smaller in the elderly group by 10.2% (P < 0.01) and 13.2% (P < 0.01), respectively. When the data for the young and elderly adults were pooled together, significantly correlated with ACSA (P < 0.05). Because of the reduced Vol and Lf in the elderly group, the resulting PCSA was found to be 15.2% (P < 0.05) smaller. In conclusion, this study demonstrates that aging significantly affects human skeletal muscle architecture. These structural alterations are expected to have implications for muscle function in old age.  相似文献   

3.
The purpose of this study was to investigate whether the mechanical properties of the Achilles tendon were correlated to muscle strength in the triceps surae in humans. Twenty-four men and twelve women exerted maximal voluntary isometric plantar flexion (MVIP) torque. The elongation (DeltaX) and strain of the Achilles tendon (epsilon), the proximal part of which is the composite of the gastrocnemius tendon and the soleus aponeurosis, at MVIP were determined from the displacement of the distal myotendinous junction of the medial gastrocnemius using ultrasonography. The Achilles tendon force at MVIP (F) was calculated from the MVIP torque and the Achilles tendon moment arm. There were no significant differences in either the F-DeltaX or F-epsilon relationships between men and women. DeltaX and epsilon were 9.8 +/- 2.6 mm and 5.3 +/- 1.6%, respectively, and were positively correlated to F (r = 0.39, P < 0.05; r = 0.39, P < 0.05), which meant that subjects with greater muscle strength could store more elastic energy in the tendon. The regression y-intercepts for the F-DeltaX (P < 0.01) and F-epsilon (P < 0.05) relationship were significantly positive. These results might indicate that the Achilles tendon was stiffer in subjects with greater muscle strength, which may play a role in reducing the probability of tendon strain injuries. It was suggested that the Achilles tendon of subjects with greater muscle strength did not impair the potential for storing elastic energy in tendons and may be able to deliver the greater force supplied from a stronger muscle more efficiently. Furthermore, the difference in the Achilles tendon mechanical properties between men and women seemed to be correlated to the difference in muscle strength rather than gender.  相似文献   

4.
This study investigated the influence of tendon elongation (TE) on postcontraction doublet (PCD) torque in the assessment of activation in the plantar flexors of nine elderly men (EM, age 73.7 +/- 3.6 yr) and nine young men (YM, age 24.7 +/- 4.7 yr). Plantar flexion maximal voluntary contractions (MVC) and activation were assessed at ankle joint angles of -20 degrees (dorsiflexion), 0 degrees , and 20 degrees (plantar flexion). Across the ankle joint angles tested, compared with YM, the EM had a 36-49% lower plantar flexion MVC (P < 0.01), TE was greater by 25-31% (P < 0.01), and electromechanical delay was 65-108% greater (P < 0.01). Activation (PCD torque to interpolated doublet torque) was 15% lower in EM compared with YM at -20 degrees (P < 0.05), but no different at 0 and 20 degrees . In the EM, PCD torque relative to MVC torque was significantly lower at 20 degrees compared with 0 degrees (P < 0.05). Electromechanical delay was positively correlated with TE (R(2) = 0.489, P < 0.01). In conclusion, this investigation demonstrates that, although a negative association exists between TE and PCD torque, the consequence of a greater TE on the estimation of activation in EM is negligible. This is due to a greater influence of ankle joint angle on the occlusion of a superimposed doublet, which counteracts the lesser influence of joint angle on TE and PCD torque. However, a greater TE in EM was found to significantly increase electromechanical delay, which is expected to influence the time needed for postural readjustments.  相似文献   

5.
The present study determined in vivo deformation of the entire Achilles tendon in the longitudinal and transverse directions during isometric plantar flexions. Twelve young women and men performed isometric plantar flexions at 0% (rest), 30%, and 60% of the maximal voluntary contraction (MVC) while a series of oblique longitudinal and cross-sectional magnetic resonance (MR) images of the Achilles tendon were taken. At the distal end of the soleus muscle belly, the Achilles tendon was divided into the aponeurotic (ATapo) and the tendinous (ATten) components. The length of each component was measured in the MR images. The widths of the Achilles tendon were determined at 10 regions along ATapo and at four regions along ATten. Longitudinal and transverse strains were calculated as changes in relative length and width compared with those at rest. The ATapo deformed in both longitudinal and transverse directions at 30%MVC and 60%MVC. There was no difference between the strains of the ATapo at 30%MVC and 60%MVC either in the longitudinal (1.1 and 1.6%) or transverse (5.0~11.4 and 5.0~13.9%) direction. The ATten was elongated longitudinally (3.3%) to a greater amount than ATapo, while narrowing transversely in the most distal region (-4.6%). The current results show that the magnitude and the direction of contraction-induced deformation of Achilles tendon are different for the proximal and distal components. This may be related to the different functions of Achilles tendon, i.e., force transmission or elastic energy storage during muscle contractions.  相似文献   

6.
The metabolic activity of tendinous tissues has traditionally been considered to be of limited magnitude. However, recent studies have suggested that glucose uptake increases in the force-transmitting tissues as a response to contractile loading, which in turn indicates an elevated tissue metabolism. The purpose of the present study was to investigate whether such a mechanism could be observed for the human Achilles tendon following tensile loading. Six subjects participated in the study. Unilateral Achilles tendon loading was applied by 25-min intermittent voluntary plantar flexor contractions. A radioactive tracer ([18F]-2-fluoro-2-deoxy-D-glucose) was administered during muscle action, and glucose uptake was measured by use of PET. Regions of interest were defined on the PET images corresponding to the cross section of Achilles tendon at two longitudinally separated sites (insertion and free tendon). Glucose uptake index was determined within respective regions of interest for the active and resting leg. Tendon force during voluntary contractions was approximately 13% of maximal voluntary contraction force. Tendon loading induced an elevated glucose uptake index compared with that of the contralateral resting tendon in the region of tendon insertion (0.13 +/- 0.05 vs. 0.09 +/- 0.02; P < 0.05) and at the free tendon (0.12 +/- 0.01 vs. 0.08 +/- 0.02; P < 0.05). The present data suggest that tissue metabolism is elevated in the human Achilles tendon in response to low-intensity loading.  相似文献   

7.
The aim of this study was to assess whether the in vivo specific force and architectural characteristics of the lateral gastrocnemius (GL) muscle of early pubescent boys (n = 11, age = 10.9 +/- 0.3 yr, Tanner stage 2) differed from those of adult men (n = 12, age = 25.3 +/- 4.4 yr). Plantarflexor torque was 55% lower in the boys (77.4 +/- 21.4 N x m) compared with the adults (175.6 +/- 31.7 N x m, P < 0.01). Physiological cross-sectional area (PCSA), determined in vivo using ultrasonography and MRI, was 52% smaller in the boys (P < 0.01). No difference was found in pennation angle, or in the ratio of fascicle length (L(f)) to muscle length between the boys and men. Moment arm length was 25% smaller in the boys (P < 0.01). Antagonist coactivation, assessed using surface EMG on the dorsiflexors, was not different between the boys and men (11.8 +/- 6.7% and 13.5 +/- 5.8%, respectively). Surprisingly, GL force normalized to PCSA (specific force) was significantly higher (21%) in the boys than in the men (13.1 +/- 2.0 vs. 15.9 +/- 2.7 N/cm(2), P < 0.05). This finding could not be explained by differences in moment arm length, muscle activation, or architecture, and other factors, such as tendinous characteristics and/or changes in moment arm length with contraction, may be held responsible. These observations warrant further investigation.  相似文献   

8.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   

9.
Warm-up exercises are often advocated prior to strenuous exercise, but the warm-up duration and effect on muscle–tendon behavior are not well defined. The gastrocnemius–Achilles tendon complexes of 18 subjects were studied to quantify the dynamic creep response of the Achilles tendon in-vivo and the warm-up dose required for the Achilles tendon to achieve steady-state behavior. A custom testing chamber was used to determine each subject's maximum voluntary contraction (MVC) during an isometric ankle plantar flexion effort. The subject's right knee and ankle were immobilized for one hour. Subjects then performed over seven minutes of cyclic isometric ankle plantar flexion efforts equal to 25–35% of their MVC at a frequency of 0.75 Hz. Ankle plantar flexion effort and images from dual ultrasound probes located over the gastrocnemius muscle–Achilles tendon and the calcaneus–Achilles tendon junction were acquired for eight seconds at the start of each sequential minute of the activity. Ultrasound images were analyzed to quantify the average relative Achilles tendon strain at 25% MVC force (ε25%MVC) for each minute. The ε25%MVC increased from 0.3% at the start of activity to 3.3% after seven minutes, giving a total dynamic creep of ~3.0%. The ε25%MVC increased by more than 0.56% per minute for the first five minutes and increased by less than 0.13% per minute thereafter. Therefore, following a period of inactivity, a low intensity warm-up lasting at least six minutes or producing 270 loading cycles is required for an Achilles tendon to reach a relatively steady-state behavior.  相似文献   

10.
Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated using ultrasonography combined with biomechanical measurements before and after a 6-wk treatment of passive-stretching and active-movement training. The passive force contributions from the GM and SOL muscles were separated using flexed and extended knee positions, and fascicular stiffness was calculated based on the fascicular force-length relation. Biomechanical properties of the Achilles tendon, including resting length, cross-sectional area, and stiffness, were also evaluated. The 6-wk training induced elongation of muscle fascicles (SOL: 8%, P = 0.018; GM: 3%, P = 0.018), reduced pennation angle (SOL: 10%, P = 0.028; GM: 5%, P = 0.028), reduced fascicular stiffness (SOL: 17%, P = 0.128; GM: 21%, P = 0.018), decreased tendon length (6%, P = 0.018), increased Achilles tendon stiffness (32%, P = 0.018), and increased Young's modulus (20%, P = 0.018). In vivo characterizations of calf muscles and Achilles tendon mechanical properties help us better understand treatment-induced changes of calf muscle-tendon and facilitate development of more effective treatments.  相似文献   

11.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

12.

Objectives:

To describe muscle size and architecture of the gastrocnemius medialis (GM) muscle in eleven adult males with Duchenne Muscular Dystrophy (DMD, age 24.5±5.4 years), and a control group of eleven males without DMD (CTRL, age 22.1±0.9 years).

Methods:

GM anatomical cross sectional area (ACSA), volume (VOL), physiological cross sectional area (PCSA), fascicle length (Lf) and pennation angle (θ) were assessed using B-Mode Ultrasonography. GM ACSA was measured at 25, 50 and 75% of muscle length (Lm), from which VOL was calculated. At 50% of Lm, sagittal plane images were analysed to determine GM Lf and θ. GM PCSA was calculated as VOL/Lf. The ratio of Lf and Lm was also calculated.

Results:

GM ACSA at 50% Lm, VOL and PCSA were smaller in DMD males compared to CTRL males by 36, 47 and 43%, respectively (P<0.01). There were no differences in Lf and θ. GM Lm was 29% shorter in DMD compared to CTRL. Lf/Lm was 29% longer in DMD (P<0.01).

Conclusions:

Unlike previous data in children with DMD, our results show significant atrophy in adult males with DMD, and no change in Lf or θ. The shorter Lm may have implications for joint flexibility.  相似文献   

13.
We dissected the left upper limb of a female orangutan and systematically recorded muscle mass, fascicle length, and physiological cross-sectional area (PCSA), in order to quantitatively clarify the unique muscle architecture of the upper limb of the orangutan. Comparisons of the musculature of the dissected orangutan with corresponding published chimpanzee data demonstrated that in the orangutan, the elbow flexors, notably M. brachioradialis, tend to exhibit greater PCSAs. Moreover, the digital II-V flexors in the forearm, such as M. flexor digitorum superficialis and M. flexor digitorum profundus, tend to have smaller PCSA as a result of their relatively longer fascicles. Thus, in the orangutan, the elbow flexors demonstrate a higher potential for force production, whereas the forearm muscles allow a greater range of wrist joint mobility. The differences in the force-generating capacity in the upper limb muscles of the two species might reflect functional specialization of muscle architecture in the upper limb of the orangutan for living in arboreal environments.  相似文献   

14.
Individuals with spastic cerebral palsy (CP) typically experience muscle weakness. The mechanisms responsible for muscle weakness in spastic CP are complex and may be influenced by the intrinsic mechanical properties of the muscle and tendon. The purpose of this study was to investigate the medial gastrocnemius (MG) muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic CP. Nine relatively high functioning young adults with spastic CP (GMFCS I, 17±2 years) and 10 typically developing individuals (18±2 years) participated in the study. Active MG torque-length and Achilles tendon properties were assessed under controlled conditions on a dynamometer. EMG was recorded from leg muscles and ultrasound was used to measure MG fascicle length and Achilles tendon length during maximal isometric contractions at five ankle angles throughout the available range of motion and during passive rotations imposed by the dynamometer. Compared to the typically developing group, the spastic CP group had 33% lower active ankle plantarflexion torque across the available range of ankle joint motion, partially explained by 37% smaller MG muscle and 4% greater antagonistic co-contraction. The Achilles tendon slack length was also 10% longer in the spastic CP group. This study confirms young adults with mild spastic CP have altered muscle–tendon mechanical properties. The adaptation of a longer Achilles tendon may facilitate a greater storage and recovery of elastic energy and partially compensate for decreased force and work production by the small muscles of the triceps surae during activities such as locomotion.  相似文献   

15.
In order to create a flexible model of the foot for dynamic musculoskeletal models, anthropometric data combined with geometric information describing the intrinsic musculature are needed. In this study, the left feet of two male and two female cadavers were dissected to expose the intrinsic musculotendon pathways. Three-dimensional coordinates of bony landmarks, tendon origins, insertions, and via points were digitized to submillimeter accuracy. Muscle architectural parameters were also measured, including volume, weight, and pennation angle and sarcomere, fascicle, and free tendon lengths. Optimal muscle fascicle lengths, pen-nation angles at optimal length, physiological cross-sectional areas (PCSA), and tendon slack lengths were calculated from the directly measured values. Fascicle length and pennation angle varied greatly within each subject. Average fascicle lengths normalized by optimal fascicle length varied between 0.73 and 1.25, with 75% of the formalin-preserved muscles being found in a shortened state. The muscle volume and PCSA also had a large variability within subjects but less variation between subjects. The ratio of tendon slack length to optimal fascicle length was found to vary between 1.05 and 9.56. Using this data, a deformable model of the foot can now be created. It is envisioned that deformable feet will significantly improve stability and realism in models of gait, posture, and sporting activities.  相似文献   

16.
The purposes of this study were to examine (a) whether the morphological properties of the muscle gastrocnemius medialis (GM) contribute to the known enhanced muscle fatigue resistance during submaximal sustained isometric plantar flexion contraction of old compared to young adults and (b) whether a submaximal fatiguing contraction differently affects the mechanical properties of the GM tendon and aponeurosis of old and young adults. Fourteen old and 12 young male subjects performed maximal voluntary isometric plantar flexions (MVC) on a dynamometer before and after a submaximal fatiguing task (40% MVC). Moments and EMG signals from the gastrocnemius medialis and lateralis, soleus and tibialis anterior muscles were measured. The elongation of the GM tendon and aponeurosis and the morphological properties of its contractile element were examined by means of ultrasonography. The old adults showed lower maximal ankle joint moment, stiffness and fascicle length in both tested conditions. The submaximal fatiguing contraction did not affect the force-strain relationship of the GM tendon and aponeurosis of either young or old adults. The time to task failure was longer for the old adults and was strongly correlated with the fascicle length (r(2)=0.50, P<0.001). This provides evidence on that the lower ratio of the active muscle volume to muscle force for the old adults might be an additional mechanism contributing to the known age related increase in muscle fatigue resistance.  相似文献   

17.
The purpose of the study was to examine the effect of prolonged vibration on the force fluctuations during a force-matching task performed at low-force levels. Fourteen young healthy men performed a submaximal force-matching task of isometric plantar flexion before and after Achilles tendon vibration (n = 8, vibration subjects) or lying without vibration (n = 6, control subjects) for 30 min. The target forces were 2.5-10% of the previbration maximal voluntary contraction force. The standard deviation of force decreased by a mean of 29 +/- 20% across target forces after vibration, whereas it did not decrease significantly in control subjects (-5 +/- 12%). This change was significantly greater compared with control subjects (P < 0.01 for both). Power spectral density of the force was predominantly composed of signals of low-frequency bandwidth (相似文献   

18.
Effects of three different fatiguing local muscular exercises upon plantar flexion reaction time and achilles tendon reflex time have been studied in 24 normal males. The Exercise Conditions, each involving a series of 30 maximal voluntary isometric contractions (MVC) of the plantar flexors, differed by allowing either 5, 10 or 20 sec rest interval between each MVC. Decrements in strength ranged from 15% to 34% MVC. Trend analysis of the fatigue patterns revealed that a cubic orthogonal polynomial equation was sufficient to describe the profile of MVC decrement for all conditions. Following the fatiguing exercise, simple visual reaction time (plantar flexion), and its two components, premotor and motor time, failed to demonstrate any change from Pre Exercise Conditions. Achilles Tendon Reflex Times, however, demonstrated a marked augmentation, as manifest in reduced total reflex times, contraction times and half relaxation times. These results may suggest the differential fatigue of motor units employed in the three motor tasks, viz. MVC, voluntary reaction and achilles tendon reflex. A plausible explanation for the augmentation of the reflex contraction resides in the known potentiating effect of elevated intramuscular temperature. Alternatively, one might postulate a neurally mediated increase in gain of the stretch servomechanism. The possibility of both mechanisms being operative is not excluded.  相似文献   

19.
The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 +/- 2.8 %) was significantly greater than that of the patella tendon (8.3 +/- 2.4 %), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 +/- 1.4 %) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 +/- 1.4 %), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.  相似文献   

20.
The purpose of this study was to quantify the influence of inevitable ankle joint motion during an isometric contraction on the measured change of the gastrocnemius medialis muscle (GM) architecture in vivo during the loading and the unloading phase. Sitting on a dynamometer subjects performed isometric maximal voluntary contractions as well as contractions induced by electrostimulation. Synchronous joint angular motion, plantarflexion moment, foot’s centre of pressure and real-time ultrasonography of muscle architecture changes of the GM were obtained. During the contraction the ankle joint position altered and significantly affected the change in muscle architecture. At maximal tendon force (1094 ± 323 N), the measured fascicle length overestimated the change in fascicle length due to the tendon force by 1.53 cm, while the measured pennation angle overestimated the change in pennation angle due to the tendon force by 5.5°. At the same tendon force the measured fascicle length and pennation angle were significantly different between loading and unloading conditions. After correcting the values for the change in ankle joint angle no differences between the loading and the unloading phase at the same tendon force were found. Concerning the estimation of GM fascicle length–force and pennation angle–force curves during the loading and unloading phase of an isometric contraction, these findings indicate that not accounting for ankle joint motion will produce unreliable results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号