首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Induction of murine lymphokine-activated killer cells by recombinant IL-7   总被引:7,自引:0,他引:7  
The data demonstrate that IL-7, a cytokine that was originally identified, purified, and cloned based upon its ability to support the growth of pre-B cells in vitro, also induces proliferation and promotes the generation of lymphokine-activated killer (LAK) cell activity in populations of resting peripheral lymphoid cells. Although the kinetics of LAK induction by IL-7 (which peaked at days 6 to 8 of culture) was slower than that detected in cultures containing IL-2 (which peaked at day 4), IL-7 was significantly more effective at maintaining cytotoxic activity over longer periods of time, and greater viable cell recoveries, than was IL-2. A wide range of murine tumor target cells were found to be lysed in an MHC-unrestricted fashion by IL-7 induced LAK, but syngeneic Con A-induced lymphoblasts were not; nor were target cells from the human tumors K562 or Daudi lysed by IL-7 LAK. IL-7 LAK were induced in populations of lymphoid cells obtained from secondary lymphoid tissues (peripheral lymph nodes and spleen), but not from primary lymphoid tissues (thymus and bone marrow). LAK induced by IL-7 from unfractionated populations of lymphoid cells were completely eliminated by treatment with anti-CD8 or anti-Thy-1+C, and unaffected by treatment with anti-CD4, anti-asialo GM1 or anti-NK1.1+C. Interestingly, although no detectable CD4+ effector cells could be detected in populations of LAK generated from unfractionated populations of lymphoid cells stimulated by IL-7, they were found to be generated from populations of lymphoid cells from which CD8+ cells had been eliminated before being cultured in medium containing IL-7. These data suggest that CD4+ T cells do not normally give rise to IL-7-induced LAK unless they are first separated from CD8+ T cells. LAK induced by IL-7 appear to be distinct from LAK activity induced by IL-2 in that there is no detectable involvement of NK-like effector cells at either the precursor or effector cell stages.  相似文献   

2.
IL-4 is a pluripotent lymphokine acting on various cell types. We investigated the role of human IL-4 on the generation of lymphokine-activated killer (LAK) activity. Human IL-4 alone did not induce LAK activity and inhibited IL-2 induction of LAK activity from unstimulated PBMC, peripheral blood null cells, spleen cells, and lymph node cells in a dose-dependent manner. IL-4 also inhibited several phenomena induced by IL-2 such as cell proliferation, augmentation of NK activity, increase of Leu-19+ cells, and expression of IL-2R(p55) on either CD3+ or Leu-19+ cells. IL-4, however, augmented cell proliferation with other T cell mitogens including PHA, Con A, PMA, or allo-MHC Ag with or without IL-2. In contrast to unstimulated cells, IL-4 alone induced marked cell proliferation and LAK activity as well as Leu-19+ cells from in vitro IL-2 preactivated PBMC or null cells, and did not inhibit IL-2 induced cell proliferation, LAK activity, Leu-19+ cells and IL-2R(p55) expression, but rather augmented them with low doses of IL-2. Although IL-4 alone induced LAK activity from peripheral blood of some patients previously given IL-2, IL-4 inhibited in vitro LAK generation with IL-2 from these cells in most cases. Therefore, IL-4 appears to directly inhibit the IL-2 activation pathway via IL-2R(p70) and prevent resting LAK precursors from proliferating and differentiating into final effector cells. However, once cells were sufficiently preactivated by IL-2, IL-4 induced LAK activity and did not inhibit IL-2 activation of these cells. These data suggest an immunoregulatory role of IL-4 on human null cells and T cells.  相似文献   

3.
Summary The activity of lymphokine-activated killer (LAK) cells is supported by various cytokines. The objective of this study was to see if recombinant interleukin-6 (IL-6) either alone or in combination with interleukin-2 (IL-2) has any effect on the generation of LAK cells. Peripheral blood mononuclear cells of healthy donors were cultured for 4 or 6 days with both cytokines either alone or in combination. LAK activity against K562 and natural killer-resistant Daudi cells was assessed by a 4-h and an 18-h51Cr-release assay at various effector to target ratios. IL-6 alone in increasing concentrations did not induce LAK cell activity. Neither additive nor synergistic effects of IL-6 with IL-2 were observed. Immunofluorescence analysis with phycoerythrin-conjugated anti-CD56 antibody demonstrated that IL-6 could not maintain or increase the number of CD56-positive cells over a 6-day culture period. These results suggest that IL-6 does not support LAK cell generation by itself or increase LAK cell activity in combination with IL-2.  相似文献   

4.
The control of malignancy disseminated within the peritoneal cavity is an important problem in the management of low-grade gastrointestinal and ovarian neoplasms. A model of peritoneal carcinomatosis in the mouse was used to investigate the potential of lymphokine-activated killer (LAK) cells and exogenous interleukin 2 (IL-2) to control intraperitoneal tumor. LAK cells are splenocytes activated in vitro by IL-2. C57BL/6 mice were injected intraperitoneally with a lethal inoculum of syngeneic MCA-105 tumor. Three days later, the established tumor was treated with adoptively transferred LAK cells and/or exogenous IL-2 administration. LAK cells alone were ineffective in reducing intraperitoneal tumor. Administration of IL-2 alone resulted in limited tumor reduction. Treatment with exogenous IL-2 in conjunction with LAK cells resulted in the greatest reduction of intraperitoneal tumor. The larger the number of LAK cells given, the greater the reduction in tumor. Frequent intraperitoneal bolus administration of IL-2 was more effective than a single daily intraperitoneal injection and intraperitoneal administration of IL-2 and LAK was more effective than systemic treatments. Marked prolongation of life was seen in mice treated with LAK cells plus exogenous IL-2. We conclude that intraperitoneal LAK cells plus exogenous IL-2 is an effective treatment regimen for reducing intraperitoneal tumor in this murine model.  相似文献   

5.
It is known that IL-2 induces lymphocytes to produce interferon-gamma (IFN-gamma) and this IFN type is particularly efficient in inducing tumor cell resistance to natural killer (NK) cell-mediated lysis. We have investigated the effect of IFN on tumor cell sensitivity to LAK cell-mediated cytotoxicity. Pretreatment of the human K562 leukemia and HHMS melanoma with IFN-gamma and the Daudi lymphoma with IFN-alpha caused a significant reduction in sensitivity to lysis by human LAK cells generated in vitro in the presence of human recombinant IL-2 (100 U/ml). The LAK activity was mediated by cells expressing NK cell markers (CD16,NKH1) as well as by cells with T cell markers (CD3, CD5). IFN-treated K562 cells were protected from lysis mediated by all these populations. Supernatants from LAK cultures containing IFN-gamma were able to induce NK and LAK resistance when used to pretreat K562 overnight. Antibodies to IFN-gamma but not to IFN-alpha were able to neutralize this activity. Taken together, these results indicate that the production of IFN-gamma by LAK cells may be of importance in induction of tumor cell resistance to LAK cell-mediated lysis.  相似文献   

6.
A 4-h in vivo cytotoxicity assay was used to study the fate of implanted IL-2-generated, lymphokine-activated killer (LAK) cells in mice undergoing an activated NK cell response. 125Iododeoxyuridine-labeled LAK cells were rejected from selected organs of C57BL/6 mice infected with lymphocytic choriomeningitis virus or treated with IL-2 or the IFN inducer poly I:C. This rejection was abrogated by the selective depletion of NK cells with antibodies to asialo-GM1 and NK1.1 Ag. Similar results were noted when LAK cells were generated from the spleens of B and T cell-deficient severe combined immunodeficiency mice and when LAK cells were implanted into severe combined immunodeficiency mice. These data indicate that NK cells activated by virus infections or by IL-2 infusions directly or indirectly eliminate implanted LAK cells. Because LAK cells are used in the treatment of certain human cancers, the strategy of accompanying this therapy with IL-2 infusions should be reassessed in light of these results.  相似文献   

7.
The biological effects of IL-2 are mediated through high (complex of alpha and beta chain) or intermediate (beta chain) affinity IL-2 receptors. Previously, chimeric proteins composed of IL-2 and Pseudomonas exotoxin (IL-2-PE) were shown to be specifically cytotoxic to cells bearing IL-2 receptors. It has also been shown that IL-2-PE chimeric proteins can abrogate T cell-mediated immune response in vitro. In the current study, we have investigated the effects of IL-2-PE on LAK activity both in vivo and in vitro. We administered either IL-2-PE40 (comprised of IL-2 and 40-kDa portion of PE) or IL-2-PE66 (comprised of IL-2 and 66-kDa molecule of PE) to normal C57BL/6 mice for 3 or 8 days and LAK activity was assessed in various organs of mice. We found that IL-2-PE40 generated LAK activity in various compartments of mice and the level of activity was slightly lower than that observed with an equivalent amount of recombinant (r) IL-2 alone. However, IL-2-PE66 failed to generate LAK activity which would have been induced due to an equivalent concentration of rIL-2. IL-2-PE66 also did not induce LAK activity from the splenocytes during in vitro culture while IL-2-PE40 generated good LAK activity. An equivalent amount of IL-2 also generated potent LAK activity. The suppression of LAK activity by IL-2-PE66 was also evident in cells preactivated with IL-2; however, this inhibition was partial. The suppressive activity of IL-2-PE66 was shown to be mediated through IL-2 receptor interactions as excess amounts of rIL-2 were able to abrogate its effect. Both IL-2 toxins were equivalently cytotoxic to IL-2 receptor-bearing HUT 102 cells and both were able to compete from high and intermediate affinity IL-2 receptors. Taken together, our data indicate that IL-2-PE66 is highly cytotoxic to LAK cells while IL-2-PE40 is less cytotoxic. Thus, data from our study and from other published reports indicate that IL-2-PE66 is more potent immunosuppressive agent than IL-2-PE40.  相似文献   

8.
Summary Human peripheral blood mononuclear cells develop a powerful lytic capacity when cultured in vitro with interleukin-2 (IL-2), becoming lymphokine-activated killer cells (LAK cells). As part of an investigation into means of influencing this process, the effect of other cytokines has been examined. In this study we describe the ability of interleukin-6 (IL-6) to regulate the induction and function of human LAK cells. The results show that substitution of IL-6 for IL-2 did not lead to the development of functional LAK cells, nor was IL-6 able to alter the lytic capacity of established LAK cells. However, when IL-6 was included with IL-2 during the induction phase of the LAK cells, the resulting cells displayed considerably greater lytic activity than those prepared with IL-2 alone. This effect was IL-6 dose-related. These results indicate that LAK cell development may be positively regulated in vitro; the implications of this observation for the clinical usage of LAK cells are discussed.  相似文献   

9.
It is possible to generate high levels of lymphokine-activated killer (LAK) activity in short-term culture from cells enriched for natural killer (NK) activity. To determine whether LAK activity can also be generated from non-NK cells, we have depleted peripheral blood lymphocytes (PBL) of NK cells prior to culture with IL-2. NK activity in PBL is correlated with the intensity of staining with the lysosomotropic vital dye quinacrine. Quinacrine dim PBL, which are devoid of lytic NK cells, are capable of developing LAK activity following culture with IL-2. We have also separated PBL using the NK-associated NKH-1 marker. Depleting NKH-1+ cells eliminates NK activity but the ability to develop LAK activity is retained. NKH-1-depleted cells generate less LAK activity than unseparated or NKH-1-positive cells and do not proliferate as well as unseparated cells to IL-2. When NK-depleted cells are subsequently examined for the expression of the NKH-1 antigen, this marker is absent from most cells at Day 3 of IL-1 culture, but is expressed on an increasing number of cells by Days 6-8. These results suggest that LAK derived from non-NK cells is functionally and phenotypically similar to LAK from PBL-containing NK cells, and may be the result of the activation of an NK precursor population.  相似文献   

10.
Using a model of local lymph node (LN) immunization, we investigated the effect of in vivo Ir on the generation of lymphokine-activated killer (LAK) cells or their precursors. Ag used for immunization were SRBC, horse RBC, OVA, keyhole limpet hemocyanin, or CFA. Ag-draining LN, in the acute phase of the Ir, did not contain detectable LAK effector activity, nor an enhanced NK activity. After culture for 3 to 5 days in the absence of exogenously added IL-2, immunized LN cells developed a spontaneous LAK-like cytotoxicity. This activity represented a substantial fraction of the IL-2-generated LAK cytolysis and was mediated by a Thy-1+ cell population phenotypically indistinct from IL-2-induced LAK. Inclusion (on day 0 of culture) of antibodies to IL-2, IL-2R, IL-4, IL-6, IFN-gamma, or TNF suggests a marginal involvement of IL-2 and IL-4 in the generation of this response. LAK, induced in vitro by exogenously added IL-2, developed earlier in LN cells immunized with particle Ag (SRBC, horse RBC, and CFA), but not with protein Ag (OVA and keyhole limpet hemocyanin). This effect was not mediated by endogenous IL-4. During further culture time in the presence of a saturating IL-2 concentration, similar levels of LAK activity were generated in naive and immunized LN cells. This agrees with the similar or slightly higher LAK precursor frequencies in immunized versus naive LN as assessed by limiting dilution experiments. Considering the 2.7-fold to 18-fold increase in cell content of the immunized LN, due to a recruitment and expansion of Ag-reactive B and T lymphocytes, a de novo generation of LAK precursors at the site of the Ir, and resulting from the Ir, must be assumed. In conclusion, our results suggest an interrelation between immune reactivity and LAK responses.  相似文献   

11.
IL-2-stimulated human lymphocytes, referred to as lymphokine-activated killer (LAK) cells, can develop a broad range of lytic activity against fresh tumor cells and cultured tumor cell lines. IL-1, a pleiotropic cytokine shown to synergize with IL-2 on LAK induction, is endogenously synthesized and secreted by LAK cells. Immunoblot analysis demonstrated that IL-2-stimulated PBL produced the 31- to 34-kDa pro-molecules of IL-1 within 24 h and maintained their expression for at least 96 h. The role of secreted IL-1 has been examined using rIL-1R antagonist (IL-1ra). The addition of IL-1ra to LAK activation culture resulted in dose-dependent inhibited lytic activity, which was more apparent in LAK cells cultured with higher doses of IL-2. However, IL-1ra had no effect on proliferative responses elicited in LAK cells by IL-2. Moreover, when IL-1 binding was blocked by IL-1ra, the expression of the IL-2R p55 subunit was reduced compared with control LAK cells. The effect of IL-1 binding blockade on expression of other cytokine mRNA was further examined by polymerase chain reaction analysis, and, specifically, inhibition of both TNF-alpha and TNF-beta mRNA expression by IL-1ra was observed in PBL stimulated with IL-2. The reduced biologic activity of TNF in culture supernatants correlated well with the inhibition of mRNA expression. These findings suggest that autocrine/paracrine IL-1 is involved in the initial generation of LAK activity and, in particular, that TNF expression could be induced via an IL-1 autocrine pathway.  相似文献   

12.
Preclinical in vitro assessment of highly purified natural human interleukin-2 (IL-2) packed in egg lecithin liposomes was performed in short- and long-term T-cell cloning and propagation systems, and in experiments testing induction of lymphokine-activated killer (LAK) cells. Liposomal IL-2 (lip-IL-2) was essentially as active as free natural or recombinant IL-2 for cloning and culture of both helper and cytotoxic alloreactive T cells. However, lip-IL-2 was found to be markedly inferior to free natural or recombinant IL-2 for the induction of LAK cells from normal donors. Nevertheless, lip-IL-2 was able to maintain LAK cytotoxicity of populations preactivated with free IL-2. These results suggest that lip-IL-2 can interact with activated T cells and LAK cells in the same way as free IL-2, but that it is much less efficient at activating LAK-cell precursors.  相似文献   

13.
Activation of natural killer (NK) activity K562 target cells from nonadherent (NA) lymphocytes by interleukin 2 (IL-2) was inhibited marginally PGE2 (30-3000 nM). PGE2 did not effectively suppress the NK activity of IL-2-activated cells. The NK activation and acquisition of resistance to PGE2-mediated suppression of NK activity were dependent on protein synthesis. When NA cells were incubated with IL-2 for 3 or more days to generate lymphokine-activated killer (LAK) activity against Raji target cells, PGE2 only partially inhibited the activation of NK/LAK activity by an optimal dose of IL-2 (10 U/ml). The activation of NK/LAK activity by a suboptimal dose of IL-2 (0.1 U/ml) was inhibited by PGE2. When the NK/LAK activity of IL-2-activated cells was assessed in the presence or absence of PGE2, the LAK activity was more sensitive than the NK activity to PGE2-mediated suppression.  相似文献   

14.
Regulation of human cytolytic lymphocyte responses by interleukin-12.   总被引:39,自引:0,他引:39  
IL-12 is a heterodimeric cytokine which has been shown to cause the proliferation of activated T and NK cells, to enhance the lytic activity of NK cells, and to induce IFN-gamma production by resting and activated T and NK cells. We previously reported that IL-12 could synergize with IL-2 to activate human LAK cells in the presence of hydrocortisone but that IL-12 alone was inactive. We herein show that in the absence of hydrocortisone, IL-12 by itself can activate human LAK cells. IL-12-induced LAK cell activity was mediated predominantly by CD56+ lymphocytes. Activation of LAK cells by IL-12 appeared to be independent of IL-2 since it was not inhibited by neutralizing anti-human IL-2. However, IL-12- and IL-2-induced LAK cell activation could be partially inhibited by anti-human TNF-alpha. Moreover, IL-12 produced in situ appeared to play a role in IL-2-induced LAK cell activation since rat monoclonal antibodies to human IL-12 could partially inhibit the generation of LAK cells in response to IL-2. In addition to its effects on LAK cell responses, IL-12 could facilitate specific allogeneic human CTL responses. However, IL-12-facilitated CTL responses were blocked by neutralizing anti-human IL-2 indicating a requirement for IL-2 produced in situ. The ability of IL-12 to facilitate both nonspecific LAK and specific CTL responses suggests that it may be useful as a therapeutic agent against some tumors and infectious diseases.  相似文献   

15.
Summary The capacity of the interferon inducer ABPP and recombinant interleukin-2 (IL-2) to generate lymphokine activated killer (LAK) cell activity in vivo was examined and compared to the cytolysis of fresh tumor cells by in vitro generated LAK cells. Various tumors differing in histology and immunogenicity were used in in vitro and in vivo experiments. The i.p. administration of ABPP or IL-2 generated much higher levels of LAK cell activity in the peritoneal exudate than in the spleen. Administration of 2 injections of ABPP was as effective as a 3-day course of moderate doses of IL-2. Generation of LAK cell activity by IL-2 was dose dependent. ABPP had significant antitumor activity in vivo in both the i.p. tumor model and the pulmonary metastasis model when administered early (24–48 h after tumor inoculation), but was ineffective against established (day 3) tumor or advanced grossly visible i.p. (day 8) tumor. Treatment of established tumor with IL-2 and LAK cells was not more effective when ABPP was given concurrently. In contrast when ABPP preceded IL-2 and LAK treatment an additional antitumor effect was seen. Immunogenic tumors were more sensitive to treatment with ABPP than nonimmunogenic tumors. Only a marginal difference in lysability in vitro existed. The antitumor effects of ABPP in vivo may therefore be mediated by mechanisms other than cytolysis by activated killer cells alone. These data taken together suggest that ABPP and IL-2 induce discernable levels of LAK cell activity, but do not synergize when combined  相似文献   

16.
The purpose of the current study was to characterize lymphokine-activated killer (LAK) activity induced with IL-4/B cell stimulatory factor-1 and to compare IL-4-induced LAK activity with IL-2-induced LAK activity. Culture of murine lymphocytes with high concentrations of IL-4 induced nonspecific lytic activity against a wide variety of tumors. Lytic activity induced by IL-4 increased with increasing concentrations of IL-4 over the range of 1.0 to 25 ng/ml. The kinetics of LAK induction by IL-4 and IL-2 were similar; however, IL-4 was less effective than IL-2 in maintaining lytic activity for longer culture periods and provided lower viable cell yields than did IL-2. Similar to IL-2, IL-4 induced blastogenesis and the generation of large granular lymphocytes, all LAK activity observed was exclusively associated with the large granular lymphocyte fraction, and the cytolytic effector cells were heterogeneous in regards to cell surface phenotype. The majority of IL-4-induced lytic activity was associated with mutually exclusive NK-like (i.e., NK-1.1+ Lyt-2-) and T cell-like (i.e., NK-1.1- Lyt-2+) LAK cells. The precursors for each subset were distinct and expressed the asialo-GM1+ Lyt-2- and the asialo-GM1+ Lyt-2+ phenotypes, respectively. Although IL-4-induced LAK effector cells were morphologically and phenotypically similar to IL-2-induced LAK cells, IL-2 generated equivalent numbers of T cell-like and NK-like LAK cells, whereas IL-4 generated 3.5-fold more T cell-like LAK cells than NK-like LAK cells. It might eventually be possible to exploit the preferential activation of T cell-like LAK by IL-4 for therapeutic advantage.  相似文献   

17.
Summary Chronic myelogenous leukemia (CML) patients in chronic phase display compromised lymphokine-activated killer (LAK) cell induction, which is partly restored after therapy with interferon . However, the relative resistance of the leukemic cells from these patients to autologous or allogeneic LAK lysis is not affected by this treatment. In an attempt to render CML cells more susceptible to lysis or cytostasis, they were precultured in serum-free medium with or without recombinant growth factors. In eight patients studied, interleukin-3 (IL-3) significantly enhanced the spontaneous short-term (6-day) proliferation of CML cells, with retention of ability to form colonies in methylcellulose. Culture in either medium alone or IL-3 led to a significant enrichment of CD14+ and CD33+ cells but to a reduction in CD34+ cells. In contrast, culture of the same cells in IL-2 (to generate autologous LAK activity) resulted in a loss of CD14+ and CD33+ as well as CD34+ cells but in a significant increase in CD3+ and CD56+ cells. Despite similarities in their phenotypes, IL-3 cultured cells but not those cultured in medium alone acquired susceptibility to lysis by the IL-2-cultured autologous LAK cells. These results may have significance for the design of novel combination immunotherapy in CML.This work was supported in part by the Deutsche Forschungsgemeinschaft (SFB 120)  相似文献   

18.
By traditional definitions, NK cells can be activated by cytokines to exhibit two functionally distinct levels of cytotoxicity. Whereas IL-2-mediated activation of NK cells leads to the development of lymphokine-activated killer (LAK) cytotoxicity, characterized by the acquisition of cytolytic activity against NK-resistant targets, IFN-treated NK cells become activated without the acquisition of novel cytolytic specificities. In this study we show that NK cells activated by 18 to 24 h of stimulation with either IFN-alpha or IFN-gamma do acquire LAK cytolytic activity, demonstrated by the ability of IFN-treated PBMC to lyse NK-resistant COLO 205 cells as well as fresh tumor targets. The level of IFN-alpha-induced LAK activity was significantly greater than that induced by IFN-gamma, although IL-2-induced LAK activity was considerably greater than IFN-alpha-induced LAK cytotoxicity. Maximal IFN-induced LAK cytotoxicity occurred after 24 h of culture, and occurred with the use of IFN-alpha at 500 U/ml and IFN-gamma at 1000 U/ml. Whereas neutralizing antibody experiments demonstrated that IFN-alpha-induced LAK activation did not involve the participation of endogenously produced IL-2, the partial inhibition (63%) of IFN-gamma-induced LAK cytotoxicity by anti-IL-2 and of IL-2-induced LAK by anti-IFN-gamma (33.3%) indicates that the induction of LAK cytotoxicity by either of these individual cytokines involves the endogenous production and participation of the other cytokine. Similar to IL-2-induced LAK cells, phenotypic analysis revealed that IFN-alpha/gamma LAK cells were Leu-19+, although the Leu 19"dim"+ subset exhibited greater IFN-induced LAK activity than the Leu-19"bright"+ subset. The results of this study clearly demonstrate that IFN-alpha and IFN-gamma induce classic LAK activity and IFN-gamma plays a participatory role in the optimal induction of LAK cells by IL-2.  相似文献   

19.
The effects of various recombinant cytokines i.e. IL-1 alpha, IL-3, IL-4, IL-6, IFN-gamma, TNF-alpha and GM-CSF used either alone or in combination with IL-2, were investigated in this study. First, their capacity to induce killer cells from human PBL was examined by evaluating the degree of killing of human NK-sensitive K562 or NK-resistant Daudi cells. Second the effects of these cytokines, LAK cells (at 1/1, 2/1, 4/1 ratio LAK effectors/bone marrow cell targets) and of the supernatants from washed killer cell cultures, were examined on the colony forming ability of human bone marrow for GM-CFU in vitro. Various degrees of NK activity against K562 was observed in PBL stimulated with the cytokines, whereas LAK activity was found only with IL-2 alone. Culture of PBL with IL-2 + IL-1 alpha or IL-2 + IL-6 or IL-2 + GM-CSF resulted in the highest LAK killing. However, addition of TNF-alpha, or IFN-gamma to IL-2 in cultures resulted in a significant suppression of LAK cell activity. Addition of IL-1 alpha, IL-2, IL-3, and IL-4 to BM cultures had little or no effect on day 14 GM-CFU, whereas addition of IL-6 and GM-CSF resulted in a stimulatory effect. LAK cells induced with IL-2 alone had no significant suppressive effects on GM-CFU.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Characterization of IL-2-induced murine cells which exhibit ADCC activity   总被引:1,自引:0,他引:1  
The incubation of murine splenocytes in recombinant interleukin 2 (IL-2) gives rise to both lymphokine-activated killer (LAK) cells capable of lysing fresh tumor cells and cells capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in the presence of anti-H2 allosera. A similarity between these two IL-2-induced cell populations was found. The precursors of the cells mediating these activities were shown to be ASGM1 positive, Thy 1 negative, and radiosensitive. Cells taken from the spleen, thymus, and bone marrow were able to mediate ADCC after culture in IL-2. The effector cell was either Thy 1 positive or negative and was less affected by anti-Thy 1 plus C' treatment than cells which mediated LAK activity. In addition ADCC was exhibited in IL-2-cultured splenocytes from various murine strains and correlated with their LAK activity with one exception. While IL-2-cultured C57BL/6 splenocytes exhibited LAK activity similar to that of C3H LAK cells, no ADCC activity could be demonstrated in C57BL/6 cells. Study of the difference in the ability of these two strains to mediate ADCC revealed that IL-2-induced FcR+ cells in C3H thymocytes, but not in C57BL/6 thymocytes. Based on FACS analysis and on the radiosensitivity of the induction of both FcR+ cells and ADCC, it was suggested that IL-2 was expanding a small FcR+ cell population rather than inducing an increase in FcR density on the cell surface. The relationship between the IL-2-induced ADCC mediator and other IL-2-induced cells, as well as ADCC effector cells, and the possible implications of the results for the in vivo therapy of cancer based on ADCC are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号