首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 micro M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.  相似文献   

2.
Stimulating microbial reduction of soluble U(VI) to insoluble U(IV) shows promise as a strategy for immobilizing uranium in uranium-contaminated subsurface environments. In order to learn more about which microorganisms might be involved in U(VI) reduction in situ, the changes in the microbial community when U(VI) reduction was stimulated with the addition of acetate were monitored in sediments from three different uranium-contaminated sites in the floodplain of the San Juan River in Shiprock, N.Mex. In all three sediments U(VI) reduction was accompanied by concurrent Fe(III) reduction and a dramatic enrichment of microorganisms in the family Geobacteraceae, which are known U(VI)- and Fe(III)-reducing microorganisms. At the point when U(VI) reduction and Fe(III) reduction were nearing completion, Geobacteraceae accounted for ca. 40% of the 16S ribosomal DNA (rDNA) sequences recovered from the sediments with bacterial PCR primers, whereas Geobacteraceae accounted for fewer than 5% of the 16S rDNA sequences in control sediments that were not amended with acetate and in which U(VI) and Fe(III) reduction were not stimulated. Between 55 and 65% of these Geobacteraceae sequences were most similar to sequences from Desulfuromonas species, with the remainder being most closely related to Geobacter species. Quantitative analysis of Geobacteraceae sequences with most-probable-number PCR and TaqMan analyses indicated that the number of Geobacteraceae sequences increased from 2 to 4 orders of magnitude over the course of U(VI) and Fe(III) reduction in the acetate-amended sediments from the three sites. No increase in Geobacteraceae sequences was observed in control sediments. In contrast to the predominance of Geobacteraceae sequences, no sequences related to other known Fe(III)-reducing microorganisms were detected in sediments. These results compare favorably with an increasing number of studies which have demonstrated that Geobacteraceae are important components of the microbial community in a diversity of subsurface environments in which Fe(III) reduction is an important process. The combination of these results with the finding that U(VI) reduction takes place during Fe(III) reduction and prior to sulfate reduction suggests that Geobacteraceae will be responsible for much of the Fe(III) and U(VI) reduction during uranium bioremediation in these sediments.  相似文献   

3.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.  相似文献   

4.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.  相似文献   

5.
Stimulating microbial reduction of soluble U(VI) to insoluble U(IV) shows promise as a strategy for immobilizing uranium in uranium-contaminated subsurface environments. In order to learn more about which microorganisms might be involved in U(VI) reduction in situ, the changes in the microbial community when U(VI) reduction was stimulated with the addition of acetate were monitored in sediments from three different uranium-contaminated sites in the floodplain of the San Juan River in Shiprock, N.Mex. In all three sediments U(VI) reduction was accompanied by concurrent Fe(III) reduction and a dramatic enrichment of microorganisms in the family Geobacteraceae, which are known U(VI)- and Fe(III)-reducing microorganisms. At the point when U(VI) reduction and Fe(III) reduction were nearing completion, Geobacteraceae accounted for ca. 40% of the 16S ribosomal DNA (rDNA) sequences recovered from the sediments with bacterial PCR primers, whereas Geobacteraceae accounted for fewer than 5% of the 16S rDNA sequences in control sediments that were not amended with acetate and in which U(VI) and Fe(III) reduction were not stimulated. Between 55 and 65% of these Geobacteraceae sequences were most similar to sequences from Desulfuromonas species, with the remainder being most closely related to Geobacter species. Quantitative analysis of Geobacteraceae sequences with most-probable-number PCR and TaqMan analyses indicated that the number of Geobacteraceae sequences increased from 2 to 4 orders of magnitude over the course of U(VI) and Fe(III) reduction in the acetate-amended sediments from the three sites. No increase in Geobacteraceae sequences was observed in control sediments. In contrast to the predominance of Geobacteraceae sequences, no sequences related to other known Fe(III)-reducing microorganisms were detected in sediments. These results compare favorably with an increasing number of studies which have demonstrated that Geobacteraceae are important components of the microbial community in a diversity of subsurface environments in which Fe(III) reduction is an important process. The combination of these results with the finding that U(VI) reduction takes place during Fe(III) reduction and prior to sulfate reduction suggests that Geobacteraceae will be responsible for much of the Fe(III) and U(VI) reduction during uranium bioremediation in these sediments.  相似文献   

6.
Although stimulation of dissimilatory metal reduction to promote the reductive precipitation of uranium has been shown to successfully remove uranium from some aquifer sediments, the organisms in the family Geobacteraceae that have been found to be associated with metal reduction in previous studies are not known to grow at the high salinities found in some uranium-contaminated groundwaters. Studies with a highly saline uranium-contaminated aquifer sediment demonstrated that the addition of acetate could stimulate the removal of U(VI) from the groundwater. This removal was associated with an enrichment in microorganisms most closely related to Pseudomonas and Desulfosporosinus species.  相似文献   

7.
Acetate amendment at uranium contaminated sites in Rifle, CO. leads to an initial bloom of Geobacter accompanied by the removal of U(VI) from the groundwater, followed by an increase of sulfate‐reducing bacteria (SRBs) which are poor reducers of U(VI). One of the challenges associated with bioremediation is the decay in Geobacter abundance, which has been attributed to the depletion of bio‐accessible Fe(III), motivating the investigation of simultaneous amendments of acetate and Fe(III) as an alternative bioremediation strategy. In order to understand the community metabolism of Geobacter and SRBs during artificial substrate amendment, we have created a genome‐scale dynamic community model of Geobacter and SRBs using the previously described Dynamic Multi‐species Metabolic Modeling framework. Optimization techniques are used to determine the optimal acetate and Fe(III) addition profile. Field‐scale simulation of acetate addition accurately predicted the in situ data. The simulations suggest that batch amendment of Fe(III) along with continuous acetate addition is insufficient to promote long‐term bioremediation, while continuous amendment of Fe(III) along with continuous acetate addition is sufficient to promote long‐term bioremediation. By computationally minimizing the acetate and Fe(III) addition rates as well as the difference between the predicted and target uranium concentration, we showed that it is possible to maintain the uranium concentration below the environmental safety standard while minimizing the cost of chemical additions. These simulations show that simultaneous addition of acetate and Fe(III) has the potential to be an effective uranium bioremediation strategy. They also show that computational modeling of microbial community is an important tool to design effective strategies for practical applications in environmental biotechnology. Biotechnol. Bioeng. 2012; 109: 2475–2483. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The advent of rapid complete genome sequencing, and the potential to capture this information in genome-scale metabolic models, provide the possibility of comprehensively modeling microbial community interactions. For example, Rhodoferax and Geobacter species are acetate-oxidizing Fe(III)-reducers that compete in anoxic subsurface environments and this competition may have an influence on the in situ bioremediation of uranium-contaminated groundwater. Therefore, genome-scale models of Geobacter sulfurreducens and Rhodoferax ferrireducens were used to evaluate how Geobacter and Rhodoferax species might compete under diverse conditions found in a uranium-contaminated aquifer in Rifle, CO. The model predicted that at the low rates of acetate flux expected under natural conditions at the site, Rhodoferax will outcompete Geobacter as long as sufficient ammonium is available. The model also predicted that when high concentrations of acetate are added during in situ bioremediation, Geobacter species would predominate, consistent with field-scale observations. This can be attributed to the higher expected growth yields of Rhodoferax and the ability of Geobacter to fix nitrogen. The modeling predicted relative proportions of Geobacter and Rhodoferax in geochemically distinct zones of the Rifle site that were comparable to those that were previously documented with molecular techniques. The model also predicted that under nitrogen fixation, higher carbon and electron fluxes would be diverted toward respiration rather than biomass formation in Geobacter, providing a potential explanation for enhanced in situ U(VI) reduction in low-ammonium zones. These results show that genome-scale modeling can be a useful tool for predicting microbial interactions in subsurface environments and shows promise for designing bioremediation strategies.  相似文献   

9.
Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.  相似文献   

10.
Although stimulation of dissimilatory metal reduction to promote the reductive precipitation of uranium has been shown to successfully remove uranium from some aquifer sediments, the organisms in the family Geobacteraceae that have been found to be associated with metal reduction in previous studies are not known to grow at the high salinities found in some uranium-contaminated groundwaters. Studies with a highly saline uranium-contaminated aquifer sediment demonstrated that the addition of acetate could stimulate the removal of U(VI) from the groundwater. This removal was associated with an enrichment in microorganisms most closely related to Pseudomonas and Desulfosporosinus species.  相似文献   

11.
A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction.  相似文献   

12.
13.
14.
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey–predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.  相似文献   

15.
Microbiological reduction of soluble U(VI) to insoluble U(IV) has been proposed as a remediation strategy for uranium-contaminated groundwater. Nitrate is a common co-contaminant with uranium. Nitrate inhibited U(VI) reduction in acetate-amended aquifer sediments collected from a uranium-contaminated site in New Mexico. Once nitrate was depleted, both U(VI) and Fe(III) were reduced concurrently. When nitrate was added to sediments in which U(VI) had been reduced, U(VI) reappeared in solution. Parallel studies with the dissimilatory Fe(III)-, U(VI)- and nitrate-reducing microorganism, Geobacter metallireducens, demonstrated that nitrate inhibited reduction of Fe(III) and U(VI) in cell suspensions of cells that had been grown with nitrate as the electron acceptor, but not in Fe(III)-grown cells. Suspensions of nitrate-grown G. metallireducens oxidized Fe(II) and U(IV) with nitrate as the electron acceptor. U(IV) oxidation was accelerated when Fe(II) was also added, presumably due to the Fe(III) being formed abiotically oxidizing U(IV). These studies demonstrate that although the presence of nitrate is not likely to be an impediment to the bioremediation of uranium contamination with microbial U(VI) reduction, it is necessary to reduce nitrate before U(VI) can be reduced. These results also suggest that anaerobic oxidation of U(IV) to U(VI) with nitrate serving as the electron acceptor may provide a novel strategy for solubilizing and extracting microbial U(IV) precipitates from the subsurface.  相似文献   

16.
The potential for stimulating microbial U(VI) reduction as an in situ bioremediation strategy for uranium-contaminated groundwater was evaluated in uranium-contaminated sediment from the FRC, Oak Ridge, TN. Sediment was at low pH (pH 4) and contained high (55 mM) concentrations of nitrate. The addition of organic electron donors resulted in a slow removal of ca. 20% of the nitrate over 120 days with a concurrent increase in pH. Uranium precipitated during nitrate reduction. This precipitation of U(VI) was not due to its reduction to U(IV) because over 90% of the uranium in the sediments remained as U(VI). Studies in which the pH of the sediments was artificially raised suggested that an increase in pH alone could not account for the precipitation of the U(VI) during nitrate reduction. Metal-reducing bacteria were recovered from the sediments in enrichment cultures, but molecular analysis of the sediment demonstrated that the addition of electron donors did not stimulate the growth of these metal reducers. Thus, although U(VI) was precipitated from the groundwater with the simple addition of electron donors, most of the uranium in the sediments was in the form of U(VI), and thus was not effectively immobilized.  相似文献   

17.
Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (<30 microg/liter or 0.126 microM). Sediment microbial communities from the treatment zone were compared with those from a control well without biostimulation. Most-probable-number estimations indicated that microorganisms implicated in bioremediation accumulated in the sediments of the treatment zone but were either absent or in very low numbers in an untreated control area. Organisms belonging to genera known to include U(VI) reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation.  相似文献   

18.
Speciation of solid-phase uranium in uranium-contaminated subsurface sediments undergoing uranium bioremediation demonstrated that although microbial reduction of soluble U(VI) readily immobilized uranium as U(IV), a substantial portion of the U(VI) in the aquifer was strongly associated with the sediments and was not microbially reducible. These results have important implications for in situ uranium bioremediation strategies.  相似文献   

19.
Speciation of solid-phase uranium in uranium-contaminated subsurface sediments undergoing uranium bioremediation demonstrated that although microbial reduction of soluble U(VI) readily immobilized uranium as U(IV), a substantial portion of the U(VI) in the aquifer was strongly associated with the sediments and was not microbially reducible. These results have important implications for in situ uranium bioremediation strategies.  相似文献   

20.
Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample‐specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)‐reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号