首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyze the function of a protein encoded by the open reading frame ssr2998 in Synechocystis sp. PCC 6803, the corresponding gene was disrupted, and the generated mutant strain was analyzed. Loss of the 7.2-kDa protein severely reduced the growth of Synechocystis, especially under high light conditions, and appeared to impair the function of the cytochrome b6 f complex. This resulted in slower electron donation to cytochrome f and photosystem 1 and, concomitantly, over-reduction of the plastoquinone pool, which in turn had an impact on the photosystem 1 to photosystem 2 stoichiometry and state transition. Furthermore, a 7.2-kDa protein, encoded by the open reading frame ssr2998, was co-isolated with the cytochrome b6 f complex from the cyanobacterium Synechocystis sp. PCC 6803. ssr2998 seems to be structurally and functionally associated with the cytochrome b6 f complex from Synechocystis, and the protein could be involved in regulation of electron transfer processes in Synechocystis sp. PCC 6803.  相似文献   

2.
Relative to ferredoxin:NADP(+) reductase (FNR) from chloroplasts, the comparable enzyme in cyanobacteria contains an additional 9 kDa domain at its amino-terminus. The domain is homologous to the phycocyanin associated linker polypeptide CpcD of the light harvesting phycobilisome antennae. The phenotypic consequences of the genetic removal of this domain from the petH gene, which encodes FNR, have been studied in Synechocystis PCC 6803. The in frame deletion of 75 residues at the amino-terminus, rendered chloroplast length FNR enzyme with normal functionality in linear photosynthetic electron transfer. Salt shock correlated with increased abundance of petH mRNA in the wild-type and mutant alike. The truncation stopped salt stress-inducible increase of Photosystem I-dependent cyclic electron flow. Both photoacoustic determination of the storage of energy from Photosystem I specific far-red light, and the re-reduction kinetics of P700(+), suggest lack of function of the truncated FNR in the plastoquinone-cytochrome b(6)f complex reductase step of the PS I-dependent cyclic electron transfer chain. Independent gold-immunodecoration studies and analysis of FNR distribution through activity staining after native polyacrylamide gelelectrophoresis showed that association of FNR with the thylakoid membranes of Synechocystis PCC 6803 requires the presence of the extended amino-terminal domain of the enzyme. The truncated DeltapetH gene was also transformed into a NAD(P)H dehydrogenase (NDH1) deficient mutant of Synechocystis PCC 6803 (strain M55) (T. Ogawa, Proc. Natl. Acad. Sci. USA 88 (1991) 4275-4279). Phenotypic characterisation of the double mutant supported our conclusion that both the NAD(P)H dehydrogenase complex and FNR contribute independently to the quinone cytochrome b(6)f reductase step in PS I-dependent cyclic electron transfer. The distribution, binding properties and function of FNR in the model cyanobacterium Synechocystis PCC 6803 will be discussed.  相似文献   

3.
4.
Unlike other cytochromes, c-type cytochromes have two covalent bonds formed between the two vinyl groups of haem and two cysteines of the protein. This haem ligation requires specific assembly proteins in prokaryotes or eukaryotic mitochondria and chloroplasts. Here, it is shown that Bordetella pertussis is an excellent bacterial model for the widespread system II cytochrome c synthesis pathway. Mutations in four different genes (ccsA, ccsB, ccsX and dipZ) result in B. pertussis strains unable to synthesize any of at least seven c-type cytochromes. Using a cytochrome c4:alkaline phosphatase fusion protein as a bifunctional reporter, it was demonstrated that the B. pertussis wild-type and mutant strains secrete an active alkaline phosphatase fusion protein. However, unlike the wild type, all four mutants are unable to attach haem covalently, resulting in a degraded N-terminal apocytochrome c4 component. Thus, apocytochrome c secretion is normal in each of the four mutants, but all are defective in a periplasmic assembly step (or export of haem). CcsX is related to thioredoxins, which possess a conserved CysXxxXxxCys motif. Using phoA gene fusions as reporters, CcsX was proven to be a periplasmic thioredoxin-like protein. Both the B. pertussis dipZ (i. e. dsbD) and ccsX mutants are corrected for their assembly defects by the thiol-reducing compounds, dithiothreitol and 2-mercaptoethanesulphonic acid. These results indicate that DipZ and CcsX are required for the periplasmic reduction of the cysteines of apocytochromes c before ligation. In contrast, the ccsA and ccsB mutants are not corrected by exogenous reducing agents, suggesting that CcsA and CcsB are required for the haem ligation step itself in the periplasm (or export of haem to the periplasm). Related to this suggestion, the topology of CcsB was determined experimentally, demonstrating that CcsB has four transmembrane domains and a large 435-amino-acid periplasmic region.  相似文献   

5.
A highly purified cytochrome b(6)f complex from the cyanobacterium Synechocystis sp. PCC 6803 selectively binds one chlorophyll a and one carotenoid in analogy to the recent published structure from two other b(6)f complexes. The unknown function of these pigments was elucidated by spectroscopy and site-directed mutagenesis. Low-temperature redox difference spectroscopy showed red shifts in the chlorophyll and carotenoid spectra upon reduction of cytochrome b(6), which indicates coupling of these pigments with the heme groups and thereby with the electron transport. This is supported by the correlated kinetics of these redox reactions and also by the distinct orientation of the chlorophyll molecule with respect to the heme cofactors as shown by linear dichroism spectroscopy. The specific role of the carotenoid echinenone for the cytochrome b(6)f complex of Synechocystis 6803 was elucidated by a mutant lacking the last step of echinenone biosynthesis. The isolated mutant complex preferentially contained a carotenoid with 0, 1 or 2 hydroxyl groups (most likely 9-cis isomers of beta-carotene, a monohydroxy carotenoid and zeaxanthin, respectively) instead. This indicates a substantial role of the carotenoid - possibly for strucure and assembly - and a specificity of its binding site which is different from those in most other oxygenic photosynthetic organisms. In summary, both pigments are probably involved in the structure, but may also contribute to the dynamics of the cytochrome b(6)f complex.  相似文献   

6.
7.
G S Tae  W A Cramer 《Biochemistry》1992,31(16):4066-4074
The COOH-terminal domain of the 80-residue cytochrome b559 alpha-subunit (psbE gene product) in Synechocystis sp. PCC 6803 was sequentially truncated in order to determine the minimum polypeptide length needed for function and assembly. A stop codon was introduced into the Arg-50, Arg-59, or Tyr-69 codons of the psbE gene, generating mutants truncated by 31, 22, and 12 residues, respectively. Removal of 12 residues caused a decrease of 20% in PSII function. Truncation of 22 or 31 residues caused a large decrease (60-85%) in the photoautotrophic growth rate, the rate of O2 evolution, and the amplitude of the 77 K 696-nm fluorescence, and a concomitant increase in the constant yield fraction (F0/Fmax) of the chlorophyll fluorescence. The level of residual activity in the Arg50-stop mutant was 10-20% of the wild type, which was reflected in a similar low level of immunochemically detected D2 polypeptide. Quantitation of the PSII reaction center stoichiometry of the Arg50-stop mutant by analysis of [14C]DCMU binding also showed a 5-fold decrease (1:910 Chl in wild type and 1:5480 Chl in R50) in the PSII reaction center concentration. However, the KD value for DCMU in the residual 15% of the complexes to which it bound was approximately equal to that (25 nM) of the wild type. Northern blot analysis showed no decrease in the b559 psbE mRNA level. Chemical difference spectral analysis of heme content indicated that the level of native cytochrome b559 heme in the Arg50-stop mutant (1:640 Chl) was 80% that of wild type (1:510 Chl).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
G S Tae  W A Cramer 《Biochemistry》1992,31(16):4066-4074
The COOH-terminal domain of the 80-residue cytochrome b559 alpha-subunit (psbE gene product) in Synechocystis sp. PCC 6803 was sequentially truncated in order to determine the minimum polypeptide length needed for function and assembly. A stop codon was introduced into the Arg-50, Arg-59, or Tyr-69 codons of the psbE gene, generating mutants truncated by 31, 22, and 12 residues, respectively. Removal of 12 residues caused a decrease of 20% in PSII function. Truncation of 22 or 31 residues caused a large decrease (60-85%) in the photoautotrophic growth rate, the rate of O2 evolution, and the amplitude of the 77 K 696-nm fluorescence, and a concomitant increase in the constant yield fraction (F0/Fmax) of the chlorophyll fluorescence. The level of residual activity in the Arg50-stop mutant was 10-20% of the wild type, which was reflected in a similar low level of immunochemically detected D2 polypeptide. Quantitation of the PSII reaction center stoichiometry of the Arg50-stop mutant by analysis of [14C]DCMU binding also showed a 5-fold decrease (1:910 Chl in wild type and 1:5480 Chl in R50) in the PSII reaction center concentration. However, the KD value for DCMU in the residual 15% of the complexes to which it bound was approximately equal to that (25 nM) of the wild type. Northern blot analysis showed no decrease in the b559 psbE mRNA level. Chemical difference spectral analysis of heme content indicated that the level of native cytochrome b559 heme in the Arg50-stop mutant (1:640 Chl) was 80% that of wild type (1:510 Chl).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a gene (slr2097, glbN) encoding a 123 amino-acid product with sequence similarity to globins. Related proteins from cyanobacteria, ciliates, and green algae bind oxygen and have a pronounced tendency to coordinate the heme iron with two protein ligands. To study the structural and functional properties of Synechocystis sp. PCC 6803 hemoglobin, slr2097 was cloned and overexpressed in Escherichia coli. Purification of the hemoglobin was performed after addition of hemin to the clarified cell lysate. Recombinant, heme-reconstituted ferric Synechocystis sp. PCC 6803 hemoglobin was found to be a stable helical protein, soluble to concentrations higher than 500 microM. At neutral pH, it yielded an electronic absorption spectrum typical of a low-spin ferric species, with maxima at 410 and 546 nm. The proton NMR spectrum revealed sharp lines spread over a chemical shift window narrower than 40 ppm, in support of low-spin hexacoordination of the heme iron. Nuclear Overhauser effects demonstrated that the heme is inserted in the protein matrix to produce one major equilibrium form. Addition of dithionite resulted in an absorption spectrum with maxima at 426, 528, and 560 nm. This reduced form appeared capable of carbon monoxide binding. Optical data also suggested that cyanide ions could bind to the heme in the ferric state. The spectral properties of the putative Synechocystis sp. PCC 6803 hemoglobin confirmed that it can be used for further studies of an ancient hemoprotein structure.  相似文献   

10.
11.
To understand the biogenesis of the plastid cytochrome b(6)f complex and to identify the underlying auxiliary factors, we have characterized the nuclear mutant hcf164 of Arabidopsis and isolated the affected gene. The mutant shows a high chlorophyll fluorescence phenotype and is severely deficient in the accumulation of the cytochrome b(6)f complex subunits. In vivo protein labeling experiments indicated that the mutation acts post-translationally by interfering with the assembly of the complex. Because of its T-DNA tag, the corresponding gene was cloned and its identity confirmed by complementation of homozygous mutant plants. HCF164 encodes a thioredoxin-like protein that possesses disulfide reductase activity. The protein was found in the chloroplast, where it is anchored to the thylakoid membrane at its lumenal side. HCF164 is closely related to the thioredoxin-like protein TxlA of Synechocystis sp PCC6803, most probably reflecting its evolutionary origin. The protein also shows a limited similarity to the eubacterial CcsX and CcmG proteins, which are required for the maturation of periplasmic c-type cytochromes. The putative roles of HCF164 for the assembly of the cytochrome b(6)f complex are discussed.  相似文献   

12.
Sll1252 was identified as a novel protein in photosystem II complexes from Synechocystis sp. PCC 6803. To investigate the function of Sll1252, the corresponding gene, sll1252, was deleted in Synechocystis 6803. Despite the homology of Sll1252 to YlmH, which functions in the cell division machinery in Streptococcus, the growth rate and cell morphology of the mutant were not affected in normal growth medium. Instead, it seems that cells lacking this polypeptide have increased sensitivity to Cl(-) depletion. The growth and oxygen evolving activity of the mutant cells was highly suppressed compared with those of wild-type cells when Cl(-) and/or Ca(2+) was depleted from the medium. Recovery of photosystem II from photoinhibition was suppressed in the mutant. Despite the defects in photosystem II, in the light, the acceptor side of photosystem II was more reduced and the donor side of photosystem I was more oxidized compared with wild-type cells, suggesting that functional impairments were also present in cytochrome b(6)/f complexes. The amounts of cytochrome c(550) and cytochrome f were smaller in the mutant in the Ca(2+)- and Cl(-)-depleted medium. Furthermore, the amount of IsiA protein was increased in the mutant, especially in the Cl(-)-depleted medium, indicating that the mutant cells perceive environmental stress to be greater than it is. The amount of accompanying cytochrome c(550) in purified photosystem II complexes was also smaller in the mutant. Overall, the Sll1252 protein appears to be closely related to redox sensing of the plastoquinone pool to balance the photosynthetic electron flow and the ability to cope with global environmental stresses.  相似文献   

13.
Ultrastructural and immunocytochemical investigations gave evidence that cyanophycin (multi-L-arginyl-poly-L-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on L-arginine or L-asparagine as sole N-source also led to high increase of cyanophycin synthesis, while growth on the combination of L-arginine or L-asparagine with nitrate only caused minor cyanophycin accumulation. Growth of Synechocystis PCC 6803 on L-arginine as sole N-source caused substantial morphological and physiological changes, such as severe thylakoid membrane degradation with partial loss of pigments and photosynthetic activity leading to a phenotype almost like that seen under nutrient deficiency. In contrast to the wild type, the PsbO-free Synechocystis PCC 6803 mutant could grow on L-arginine as sole N-source with only minor morphological and physiological changes. Due to its fairly balanced growth, the mutant accumulated only few cyanophycin granules. L-arginine degrading activity (measured as ornithine and ammonium formation) was high in the PsbO-free mutant but not in the wild type when cells were grown on L-arginine as sole N-source. In both cells types the L-arginine degrading activity was high (although in the PsbO-free mutant about twice as high as in wild type), when cells were grown on L-arginine in combination with nitrate, and as expected very low when cells were grown on nitrate as sole N-source. Thus, net cyanophycin accumulation in Synechocystis PCC 6803 is regulated by the relative concentration of L-arginine to the total nitrogen pool, and the intracellular L-arginine concentration is greatly influenced by the activity of the L-arginine degrading enzyme system which in part is regulated by the activity status of photosystem II. These results suggest a complex interrelation between cyanophycin synthesis, L-arginine catabolism, and in addition photosynthesis in Synechocystis PCC 6803.  相似文献   

14.
Li Z  Andrews H  Eaton-Rye JJ  Burnap RL 《Biochemistry》2004,43(44):14161-14170
The H(2)O oxidizing domain of the cyanobacterial photosystem II (PSII) complex contains a low potential, c-type cytochrome termed c(550) that is essential for the in vivo stability of the PSII complex. A mutant lacking cytochrome c(550) (DeltapsbV) in Synechocystis sp. PCC6803 has been further analyzed together with a construct in which the distal axial heme iron ligand, histidine 92, has been substituted with a methionine (C550-H92M). Heme staining of SDS-PAGE showed that the C550-H92M mutation did not disturb the accumulation and heme-binding properties of the cytochrome. In DeltapsbV cells, the number of charge separating PSII centers was estimated to be 56% of the wild type, but of the existing centers, 33% lacked photooxidizable Mn ions. C550-H92M did not discernibly affect the intrinsic PSII electron-transfer kinetics compared to the wild type nor did it exhibit a significant fraction of centers lacking photooxidizable Mn; however, the number of charge separating PSII centers in mutant cells was 69% of the wild type. C550-H92M lost photoautotrophic growth ability in the absence of Ca(2+), but its growth was not affected by depletion of Cl(-), which differs from DeltapsbV. Taken together, the results suggest that in the absence of cytochrome c(550) electron transfer on the donor side is retarded perhaps at the level of Y(z) to P680(+) transfer, the heme ligand. His92 is not absolutely required for assembly of functional PSII centers; however, replacement by methionine prevents normal accumulation of PSII centers in the thylakoid membranes and alters the Ca(2+) requirement of PSII. The results are discussed in terms of current understanding of the Ca(2+) site of PSII.  相似文献   

15.
The glnA gene from Synechocystis sp. strain PCC 6803 was cloned by hybridization with the glnA gene from Anabaena sp. strain PCC 7120, and a deletion-insertion mutation of the Synechocystis gene was generated in vitro. A strain derived from Synechocystis sp. strain PCC 6803 which contained integrated into the chromosome, in addition to its own glnA gene, the Anabaena glnA gene was constructed. From that strain, a Synechocystis sp. glnA mutant could be obtained by transformation with the inactivated Synechocystis glnA gene; this mutant grew by using Anabaena glutamine synthetase and was not a glutamine auxotroph. A Synechocystis sp. glnA mutant could not be obtained, however, from the wild-type Synechocystis sp. The Anabaena glutamine synthetase enzyme was subject to ammonium-promoted inactivation when expressed in the Synechocystis strain but not in the Anabaena strain itself.  相似文献   

16.
The agp gene encoding the ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis and glucosylglycerol formation. By in vitro DNA recombination technology, a mutant with partial deletion of agp gene in the cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutant could not synthesize glycogen or the osmoprotective substance glucosylglycerol. In the mutant cells grown in the medium containing 0.9 M NaCl for 96 h, no glucosylglycerol was detected and the total amount of sucrose was 29 times of that of in wild-type cells. Furthermore, the agp deletion mutant could tolerate up to 0.9 M salt concentration. Our results suggest that sucrose might act as a similar potent osmoprotectant as glucosylglycerol in cyanobacterium Synechocystis sp. PCC 6803.  相似文献   

17.
18.
19.
Keren N  Aurora R  Pakrasi HB 《Plant physiology》2004,135(3):1666-1673
Cyanobacteria are key contributors to global photosynthetic productivity, and iron availability is essential for cyanobacterial proliferation. While iron is abundant in the earth's crust, its unique chemical properties render it a limiting factor for photoautotrophic growth. As compared to other nonphotosynthetic organisms, oxygenic photosynthetic organisms such as cyanobacteria, algae, and green plants need large amounts of iron to maintain functional PSI complexes in their photosynthetic apparatus. Ferritins and bacterioferritins are ubiquitously present iron-storage proteins. We have found that in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803), bacterioferritins are responsible for the storage of as much as 50% of cellular iron. Synechocystis 6803, as well as many other cyanobacterial species, have two bacterioferritins, BfrA and BfrB, in which either the heme binding or di-iron center ligating residues are absent. Purified bacterioferritin complex from Synechocystis 6803 has both BfrA and BfrB proteins. Targeted mutagenesis of each of the two bacterioferritin genes resulted in poor growth under iron-deprived conditions. Inactivation of both genes did not result in a more severe phenotype. These results support the presence of a heteromultimeric structure of Synechocystis bacterioferritin, in which one subunit ligates a di-iron center while the other accommodates heme binding. Notably, the reduced internal iron concentrations in the mutant cells resulted in a lower content of PSI. In addition, they triggered iron starvation responses even in the presence of normal levels of external iron, thus demonstrating a central role of bacterioferritins in iron homeostasis in these photosynthetic organisms.  相似文献   

20.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号