首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
针对基因芯片数据缺失问题,利用蛋白质相互作用关系与基因表达的内在联系,提出了一种利用蛋白质相互作用信息提高基因芯片缺失数据估计精度的方法.将蛋白质间的相互作用关系与基因表达数据间的距离相结合来计算基因间的表达相似度,根据这个新的相似性度量标准为含有缺失数据的基因选择更为合适的用于估计缺失值的基因集合.将新的相似性度量标准与传统的KNNimpute、 LLSimpute方法相结合,描述了对应的改进算法PPI-KNNimpute、 PPI-LLSimpute.对真实的数据集测试表明,蛋白质相互作用信息能有效改善基因缺失数据估计的精度.  相似文献   

2.
基因芯片表达谱数据的预处理分析   总被引:1,自引:0,他引:1  
基因芯片数据的预处理是一个十分关键的步骤,通过数据过滤获取需要的数据、数据转换满足正态分布的分析要求、缺失值的估计弥补不完整的数据、数据归一化纠正系统误差等处理为后续分析工作做准备,预处理分析的重要性并不亚于基因芯片的后续分析,它将直接影响后续分析是否能得到预期的结果.本文重点综述了cDNA芯片的数据预处理,简要地概述寡核苷酸芯片的数据预处理.  相似文献   

3.
夏遥  孔薇 《生物磁学》2011,(Z1):4742-4747
目的:基于阿尔茨海默病微阵列基因表达数据,分析研究微阵列基因表达数据预处理的新的有效方法。方法:首先采用标准差滤波、FSC(特征记分准则)和WPT-SAM(小波包变换-微阵列数据显著性分析)方法对微阵列基因表达数据进行预处理,比较处理后获得的基因数和FDR值;然后采用分类聚类方法对处理后的数据进行分类聚类和分层决策聚类,比较分类聚类结果。结果:标准差滤波和FSC方法获得的初筛基因数据较WPT-SAM方法多,但FDR值也高、后续分类聚类结果较WPT-SAM方法差。结论:WPT-SAM方法在预处理微阵列基因表达数据中,是比较灵活理想的分析方法。  相似文献   

4.
给出协变量带有不可忽略缺失数据的非线性再生散度模型的Bayes方法,缺失数据机制由Logistic回归模型来确定.Gibbs抽样技术和Metropolis-Hastings算法(简称MH算法)用来得到模型参数、缺失数据机制中回归系数的联合Bayes估计,并用实例加以说明.  相似文献   

5.
目的:基于阿尔茨海默病微阵列基因表达数据,分析研究微阵列基因表达数据预处理的新的有效方法.方法:首先采用标准差滤波、FSC(特征记分准则)和WPT-SAM(小波包变换-微阵列数据显著性分析)方法对微阵列基因表达数据进行预处理,比较处理后获得的基因数和FDR值;然后采用分类聚类方法对处理后的数据进行分类聚类和分层决策聚类,比较分类聚类结果.结果:标准差滤波和FSC方法获得的初筛基因数据较WPT-SAM方法多,但FDR值也高、后续分类聚类结果较WPT-SAM方法差.结论:WPT-SAM方法在预处理微阵列基因表达数据中,是比较灵活理想的分析方法.  相似文献   

6.
基于遗传算法的基因表达数据的K-均值聚类分析   总被引:1,自引:0,他引:1  
聚类算法在基因表达数据的分析处理过程中得到日益广泛的应用。本文通过把K-均值聚类算法引入到遗传算法中,结合基因微阵列的特点,来讨论一种基于遗传算法的K-均值聚类模型,目的是利用遗传算法的全局性来提高聚类算法找到全局最优的可能性,实验结果证明,该算法可以很好地解决某些基因表达数据的聚类分析问题。  相似文献   

7.
DNA微阵列技术的发展为基因表达研究提供更有效的工具。分析这些大规模基因数据主要应用聚类方法。最近,提出双聚类技术来发现子矩阵以揭示各种生物模式。多目标优化算法可以同时优化多个相互冲突的目标,因而是求解基因表达矩阵的双聚类的一种很好的方法。本文基于克隆选择原理提出了一个新奇的多目标免疫优化双聚类算法,来挖掘微阵列数据的双聚类。在两个真实数据集上的实验结果表明该方法比其他多目标进化双聚娄算法表现出更优越的性能。  相似文献   

8.
由于基因表达数据高属性维、低样本维的特点,Fisher分类器对该种数据分类性能不是很高。本文提出了Fisher的改进算法Fisher-List。该算法独特之处在于为每个类别确定一个决策阀值,每个阀值既包含总体样本信息,又含有某些对分类至关重要的个体样本信息。本文用实验证明新算法在基因表达数据分类方面比Fisher、LogitBoost、AdaBoost、k-近邻法、决策树和支持向量机具有更高的性能。  相似文献   

9.
非线性再生散度随机效应模型是指数族非线性随机效应模型和非线性再生散度模型的推广和发展.通过视模型中的随机效应为假想的缺失数据和应用Metropolis-Hastings(MH)算法,提出了模型参数极大似然估计的Monte-Carlo EM(MCEM)算法,并用模拟研究和实例分析说明了该算法的可行性.  相似文献   

10.
与实验条件相关的基因功能模块聚类分析方法   总被引:2,自引:0,他引:2  
喻辉  郭政  李霞  屠康 《生物物理学报》2004,20(3):225-232
针对细胞内基因功能模块化的现象,定义了“基因功能模块”和“特征功能模块”两个概念,并基于这两个概念提出一种“与实验条件相关的基因功能模块聚类算法”。该算法综合利用基因功能知识与基因表达谱信息,将基因聚类为与实验条件相关的基因功能模块。向基因表达谱中加入水平逐渐升高的数据噪音,根据基因功能模块对数据噪音的抵抗力,确定最稳定的基因功能模块,即特征功能模块。加噪音实验显示,在基因芯片技术可能发生的噪音范围内,该算法对噪音的稳健性优于层次聚类和模糊C均值聚类。将模块聚类算法应用在NCI60数据集上,发现了8个与实验条件高度相关的特征功能模块。  相似文献   

11.
MOTIVATION: Gene expression data often contain missing expression values. Effective missing value estimation methods are needed since many algorithms for gene expression data analysis require a complete matrix of gene array values. In this paper, imputation methods based on the least squares formulation are proposed to estimate missing values in the gene expression data, which exploit local similarity structures in the data as well as least squares optimization process. RESULTS: The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. The similar genes are chosen by k-nearest neighbors or k coherent genes that have large absolute values of Pearson correlation coefficients. Non-parametric missing values estimation method of LLSimpute are designed by introducing an automatic k-value estimator. In our experiments, the proposed LLSimpute method shows competitive results when compared with other imputation methods for missing value estimation on various datasets and percentages of missing values in the data. AVAILABILITY: The software is available at http://www.cs.umn.edu/~hskim/tools.html CONTACT: hpark@cs.umn.edu  相似文献   

12.
Microarray gene expression data often contains multiple missing values due to various reasons. However, most of gene expression data analysis algorithms require complete expression data. Therefore, accurate estimation of the missing values is critical to further data analysis. In this paper, an Iterated Local Least Squares Imputation (ILLSimpute) method is proposed for estimating missing values. Two unique features of ILLSimpute method are: ILLSimpute method does not fix a common number of coherent genes for target genes for estimation purpose, but defines coherent genes as those within a distance threshold to the target genes. Secondly, in ILLSimpute method, estimated values in one iteration are used for missing value estimation in the next iteration and the method terminates after certain iterations or the imputed values converge. Experimental results on six real microarray datasets showed that ILLSimpute method performed at least as well as, and most of the time much better than, five most recent imputation methods.  相似文献   

13.
Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as accurate as those from the best EMimpute algorithm.  相似文献   

14.
A Bayesian missing value estimation method for gene expression profile data   总被引:13,自引:0,他引:13  
MOTIVATION: Gene expression profile analyses have been used in numerous studies covering a broad range of areas in biology. When unreliable measurements are excluded, missing values are introduced in gene expression profiles. Although existing multivariate analysis methods have difficulty with the treatment of missing values, this problem has received little attention. There are many options for dealing with missing values, each of which reaches drastically different results. Ignoring missing values is the simplest method and is frequently applied. This approach, however, has its flaws. In this article, we propose an estimation method for missing values, which is based on Bayesian principal component analysis (BPCA). Although the methodology that a probabilistic model and latent variables are estimated simultaneously within the framework of Bayes inference is not new in principle, actual BPCA implementation that makes it possible to estimate arbitrary missing variables is new in terms of statistical methodology. RESULTS: When applied to DNA microarray data from various experimental conditions, the BPCA method exhibited markedly better estimation ability than other recently proposed methods, such as singular value decomposition and K-nearest neighbors. While the estimation performance of existing methods depends on model parameters whose determination is difficult, our BPCA method is free from this difficulty. Accordingly, the BPCA method provides accurate and convenient estimation for missing values. AVAILABILITY: The software is available at http://hawaii.aist-nara.ac.jp/~shige-o/tools/.  相似文献   

15.
Improving missing value estimation in microarray data with gene ontology   总被引:3,自引:0,他引:3  
MOTIVATION: Gene expression microarray experiments produce datasets with frequent missing expression values. Accurate estimation of missing values is an important prerequisite for efficient data analysis as many statistical and machine learning techniques either require a complete dataset or their results are significantly dependent on the quality of such estimates. A limitation of the existing estimation methods for microarray data is that they use no external information but the estimation is based solely on the expression data. We hypothesized that utilizing a priori information on functional similarities available from public databases facilitates the missing value estimation. RESULTS: We investigated whether semantic similarity originating from gene ontology (GO) annotations could improve the selection of relevant genes for missing value estimation. The relative contribution of each information source was automatically estimated from the data using an adaptive weight selection procedure. Our experimental results in yeast cDNA microarray datasets indicated that by considering GO information in the k-nearest neighbor algorithm we can enhance its performance considerably, especially when the number of experimental conditions is small and the percentage of missing values is high. The increase of performance was less evident with a more sophisticated estimation method. We conclude that even a small proportion of annotated genes can provide improvements in data quality significant for the eventual interpretation of the microarray experiments. AVAILABILITY: Java and Matlab codes are available on request from the authors. SUPPLEMENTARY MATERIAL: Available online at http://users.utu.fi/jotatu/GOImpute.html.  相似文献   

16.
Missing value estimation methods for DNA microarrays   总被引:39,自引:0,他引:39  
MOTIVATION: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied. In this report, we investigate automated methods for estimating missing data. RESULTS: We present a comparative study of several methods for the estimation of missing values in gene microarray data. We implemented and evaluated three methods: a Singular Value Decomposition (SVD) based method (SVDimpute), weighted K-nearest neighbors (KNNimpute), and row average. We evaluated the methods using a variety of parameter settings and over different real data sets, and assessed the robustness of the imputation methods to the amount of missing data over the range of 1--20% missing values. We show that KNNimpute appears to provide a more robust and sensitive method for missing value estimation than SVDimpute, and both SVDimpute and KNNimpute surpass the commonly used row average method (as well as filling missing values with zeros). We report results of the comparative experiments and provide recommendations and tools for accurate estimation of missing microarray data under a variety of conditions.  相似文献   

17.

Background  

Gene expression profiling has become a useful biological resource in recent years, and it plays an important role in a broad range of areas in biology. The raw gene expression data, usually in the form of large matrix, may contain missing values. The downstream analysis methods that postulate complete matrix input are thus not applicable. Several methods have been developed to solve this problem, such as K nearest neighbor impute method, Bayesian principal components analysis impute method, etc. In this paper, we introduce a novel imputing approach based on the Support Vector Regression (SVR) method. The proposed approach utilizes an orthogonal coding input scheme, which makes use of multi-missing values in one row of a certain gene expression profile and imputes the missing value into a much higher dimensional space, to obtain better performance.  相似文献   

18.
We have undertaken two-dimensional gel electrophoresis proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of gel-based experiments not all protein spots are detected across all samples in an experiment, and hence datasets are invariably incomplete. New approaches are therefore required for the analysis of such graduated datasets. We approached this problem in two ways. Firstly, we applied a missing value imputation technique to calculate missing data points. Secondly, we combined a singular value decomposition based hierarchical clustering with the expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have shown that while imputation of missing data was a useful method to improve the statistical analysis of such data sets, this was of limited use in differentiating between the samples investigated, and highlighted a small number of candidate proteins for further investigation.  相似文献   

19.
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.  相似文献   

20.
One of the essential issues in microarray data analysis is to identify differentially expressed genes (DEGs) under different experimental treatments. In this article, a statistical procedure was proposed to identify the DEGs for gene expression data with or without missing observations from microarray experiment with one- or two-treatment factors. An F statistic based on Henderson method III was constructed to test the significance of differential expression for each gene under different treatment(s) levels. The cutoff P value was adjusted to control the experimental-wise false discovery rate. A human acute leukemia dataset corrected from 38 leukemia patients was reanalyzed by the proposed method. In comparison to the results from significant analysis of microarray (SAM) and microarray analysis of variance (MAANOVA), it was indicated that the proposed method has similar performance with MAANOVA for data with one-treatment factor, but MAANOVA cannot directly handle missing data. In addition, a mouse brain dataset collected from six brain regions of two inbred strains (two-treatment factors) was reanalyzed to identify genes with distinct regional-specific expression patterns. The results showed that the proposed method could identify more distinct regional-specific expression patterns than the previous analysis of the same dataset. Moreover, a computer program was developed and incorporated in the software QTModel, which is freely available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号