首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Parathyroid hormone (PTH) regulates bone remodeling and calcium homeostasis by acting on osteoblasts. Recently, the gene expression profile changes in the rat PTH (1-34, 10(-8)M)-treated rat osteoblastic osteosarcoma cell line, UMR 106-01, using DNA microarray analysis showed that mRNA for LTBP-1, a latent transforming growth factor (TGF-beta)-binding protein is stimulated by PTH. Latent TGF-beta binding proteins (LTBPs) are required for the proper folding and secretion of TGF-beta, thus modifying the activity of TGF-beta, which is a local factor necessary for bone remodeling. We show here by real time RT-PCR that PTH-stimulated LTBP-1 mRNA expression in rat and mouse preosteoblastic cells. PTH also stimulated LTBP-1 mRNA expression in all stages of rat primary osteoblastic cells but extended expression was found in differentiating osteoblasts. PTH also stimulated TGF-beta1 mRNA expression in rat primary osteoblastic cells, indicating a link between systemic and local factors for intracellular signaling in osteoblasts. An additive effect on LTBP-1 mRNA expression was found when UMR 106-01 cells were treated with PTH and TGF-beta1 together. We further examined the signaling pathways responsible for PTH-stimulated LTBP-1 and TGF-beta1 mRNA expression in UMR 106-01 cells. The PTH stimulation of LTBP-1 and TGF-beta1 mRNA expression was dependent on the PKA and the MAPK (MEK and p38 MAPK) pathways, respectively in these cells, suggesting that PTH mediates its effects on osteoblasts by several intracellular signaling pathways. Overall, we demonstrate here that PTH stimulates LTBP-1 mRNA expression in osteoblastic cells and this is PKA-dependent. This event may be important for PTH action via TGF-beta in bone remodeling.  相似文献   

2.
3.
Collagenase-3 expression in osteoblastic (UMR 106-01, ROS 17/2.8) and non-osteoblastic cell lines (BC1, NIH3T3) was examined. We observed that parathyroid hormone (PTH) induces collagenase-3 expression only in UMR cells but not in BC1 (which express collagenase-3 constitutively) or ROS and NIH3T3 cells. Since we know from UMR cells that the AP-1 factors and Cbfa1 are required for collagenase-3 expression, we analyzed the expression and PTH regulation of these factors by gel shift and Northern blot analysis in all cell lines. Gel mobility shift with a [(32)P]-labeled collagenase-3 AP-1 site probe indicated the induction of c-Fos in osteoblastic cells upon PTH treatment. While c-fos was induced in UMR cells, both c-fos and jun B were induced in ROS cells. Since Jun B is inhibitory of Fos and Jun in the regulation of the rat collagenase-3 gene in UMR cells, it is likely that high levels of Jun B prevent PTH stimulation of collagenase-3 in ROS cells. When we carried out gel shift analysis with a [(32)P]-labeled collagenase-3 RD (runt domain) site probe and Northern blot analysis with a Cbfa1 specific probe, we have observed the presence of Cbfa1 in both osteoblastic and non-osteoblastic cell lines, but there was no change in the levels of Cbfa1 RNA or protein in these cells under either control conditions or PTH treatment. From our studies above, it is evident that the expression of collagenase-3 and its regulation by PTH in osteoblastic and non-osteoblastic cells may be influenced by differential temporal stimulation of the AP-1 family members, especially c-Fos and Jun B along with the potential for posttranslational modification(s) of Cbfa1.  相似文献   

4.
5.
6.
7.
Parathyroid hormone (PTH) is known to have both catabolic and anabolic effects on bone. The dual functionality of PTH may stem from its ability to activate two signal transduction mechanisms: adenylate cyclase and phospholipase C. Here, we demonstrate that continuous treatment of UMR 106-01 and primary osteoblasts with PTH peptides, which selectively activate protein kinase C, results in significant increases in DNA synthesis. Given that ERKs are involved in cellular proliferation, we examined the regulation of ERKs in UMR 106-01 and primary rat osteoblasts following PTH treatment. We demonstrate that treatment of osteoblastic cells with very low concentrations of PTH (10(-12) to 10(-11) m) is sufficient for substantial increases in ERK activity. Treatment with PTH-(1-34) (10(-8) m), PTH-(1-31), or 8-bromo-cAMP failed to stimulate ERKs, whereas treatment with phorbol 12-myristate 13-acetate, serum, or PTH peptides lacking the N-terminal amino acids stimulated activity. Furthermore, the activation of ERKs was prevented by pretreatment of osteoblastic cells with inhibitors of protein kinase C (GF 109203X) and MEK (PD 98059). Treatment of UMR cells with epidermal growth factor (EGF), but not PTH, promoted tyrosine phosphorylation of the EGF receptor. Transient transfection of UMR cells with p21(N17Ras) did not block activation of ERKs following treatment with low concentrations of PTH. Thus, activation of ERKs and proliferation by PTH is protein kinase C-dependent, but stimulation occurs independently of the EGF receptor and Ras activation.  相似文献   

8.
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.  相似文献   

9.
10.
12–RhoA signaling is a parathyroid hormone (PTH)‐stimulated pathway that mediates effects in bone and may influence genetic susceptibility to osteoporosis. To further elucidate effects of the pathway in osteoblasts, UMR‐106 osteoblastic cells were stably transfected with constitutively active (ca) Gα12 or caRhoA or dominant negative (dn) RhoA and co‐cultured with RAW 264.7 cells to determine effects on hormone‐stimulated osteoclastogenesis. Whereas PTH and calcitriol‐stimulated osteoclastogenesis in co‐cultures with UMR‐106 cells expressing pcDNA or dominant negative RhoA, the osteoclastogenic effects of PTH and calcitriol were significantly attenuated when the UMR‐106 cells expressed either caRhoA or caGα12. These inhibitory effects were partially reversed by the Rho kinase inhibitor Y27632. None of the constructs affected osteoclastogenesis in untreated co‐cultures, and the constructs did not inhibit the osteoclastogenic responses to receptor activator of NFκB ligand (RANKL). To investigate the mechanism of the inhibitory effects of caGα12 and caRhoA, expression of RANKL, osteoprotegerin (OPG), osteopontin (OPN), and intercellular adhesion molecule‐1 (ICAM) in response to PTH or calcitriol was examined in the UMR‐106 cells. In the cells expressing pcDNA or dnRhoA, PTH and calcitriol increased RANKL mRNA and decreased OPG mRNA, whereas these effects were absent in the cells expressing caGα12 or caRhoA. Basal expression of RANKL and OPG was unaffected by the constructs. The results suggest that Gα12–RhoA signaling can inhibit hormone‐stimulated osteoclastogenesis by effects on expression of RANKL and OPG. Since PTH can stimulate the Gα12–RhoA pathway, the current findings could represent a homeostatic mechanism for regulating osteoclastogenic action. J. Cell. Biochem. 111: 1531–1536, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号