首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Transgenic Pssu-ipt tobacco with elevated content of endogenous cytokinins grown under in vitro conditions exhibited elevated activities of antioxidant enzymes (i.e. catalase, ascorbate peroxidase, guaiacol and syringaldazine peroxidase, glutathione reductase) and some of enzymes involved in anaplerotic pathways such as glucose-6-phosphate dehydrogenase, glycolate oxidase, NADP-malic enzyme, NADP-isocitrate dehydrogenase, and glutamate dehydrogenase compared to control non-transgenic SR1 tobacco. Higher activities of peroxidases, NADP-malic enzyme, and glutamate dehydrogenase were maintained in transgenic grafts after several weeks of the growth under ex vitro conditions, while transgenic rooted plants showed only the increase in activity of glycolate oxidase compared to control non-transformed tobacco. Total activities of superoxide dismutase were lower in both types of Pssu-ipt tobacco contrary to controls under both growth conditions. The presence of PR-1 protein and proteins with elevated activities of chitinase was proved in the extracellular fluid in both transgenic types under both in vitro and ex vitro conditions.  相似文献   

2.
Cytokinin (CK) content and activities of several antioxidant enzymes were examined during plant ontogeny with the aim to elucidate their role in delayed senescence of transgenic Pssu-ipt tobacco. Control Nicotiana tabacum L. (cv. Petit Havana SR1) and transgenic tobacco with the ipt gene under the control of the promoter of small subunit of Rubisco (Pssu-ipt) were both grown either as grafts on control rootstocks or as rooted plants. Both control plant types showed a decline in total content of CKs with proceeding plant senescence. Contrary to this both transgenic plant types exhibited at least ten times higher content of CKs than controls and a significant increase of CK contents throughout the ontogeny with maximal values in the later stages of plant development. Significantly higher portion of O-glucosides was found in both transgenic plant types compared to control ones. In transgenic plants, zeatin and zeatin riboside were predominant type of CKs. Generally, Pssu-ipt tobacco exhibited elevated activities of antioxidant enzymes compared to control tobacco particularly in the later stages of plant development. While in control tobacco activity of glutathione reductase (GR) and superoxide dismutase (SOD) showed increasing activity up to the onset of flowering and then gradually decreased, in both transgenic types GR increased and SOD activity showed only small change throughout the plant ontogeny. Ascorbate peroxidase (APOD) was stimulated in both transgenic types. The manifold enhancement of syringaldazine and guaiacol peroxidase activities was observed in transgenic grafts throughout plant ontogeny in contrast to control and transgenic rooted plants, where the increase was found only in the late stages. Electron microscopic examination showed higher number of crystallic cores in peroxisomes and abnormal interactions among organelles in transgenic tobacco in comparison with control plant. The overproduction of cytokinins resulted in the stimulation of activities of AOE throughout the plant ontogeny of transgenic Pssu-ipt tobacco.  相似文献   

3.
4.
We present evidence that overproduction of endogenous cytokinins (CK) caused stress response in non-rooting Pssu-ipt transgenic tobacco (Nicotiana tabacum L.) grown in vitro. It was demonstrated by overaccumulation of phenolic compounds, synthesis of pathogenesis related proteins (PR proteins), and increase in peroxidase (POD) activities. Immunolocalization of zeatin and also PR-1b protein on leaf cryo-sections proved their accumulation in all mesophyll cells of transgenic tobacco contrary to control non-transgenic plants. Intensive blue autofluorescence of phenolic compounds induced by UV in cross-sections of leaf midrib showed enhanced contents of phenolics in transgenic tobacco compared with controls, nevertheless, no significant difference between both plant types was found in leaf total lignin content. Transgenic plantlets exhibited higher peroxidase activities of both soluble and ionically bound fractions compared with controls. HPLC analysis of phenolic acids confirmed the increase in all phenolic acids in transgenic tobacco except for salicylic acid (SA). The effect of high phenolic content on rooting of transgenic tobacco is discussed.  相似文献   

5.
Drought is one of the most important abiotic stresses affecting the productivity of maize. Previous studies have shown that expression of a mitogen-activated protein kinase kinase kinase (MAPKKK) gene activated an oxidative signal cascade and led to the tolerance of freezing, heat, and salinity stress in transgenic tobacco. To analyse the role of activation of oxidative stress signalling in improving drought tolerance in major crops, a tobacco MAPKKK (NPK1) was expressed constitutively in maize. Results show that NPK1 expression enhanced drought tolerance in transgenic maize. Under drought conditions, transgenic maize plants maintained significantly higher photosynthesis rates than did the non-transgenic control, suggesting that NPK1 induced a mechanism that protected photosynthesis machinery from dehydration damage. In addition, drought-stressed transgenic plants produced kernels with weights similar to those under well-watered conditions, while kernel weights of drought-stressed non-transgenic control plants were significantly reduced when compared with their non-stressed counterparts.  相似文献   

6.
Osmotin and osmotin-like proteins are stress proteins belonging to the plant PR-5 group of proteins induced in several plant species in response to various types of biotic and abiotic stresses. We report here the overexpression of tobacco osmotin in transgenic mulberry plants under the control of a constitutive promoter (CaMV 35S) as well as a stress-inducible rd29A promoter. Southern analysis of the transgenic plants revealed the stable integration of the introduced genes in the transformants. Real-time PCR analysis provided evidence for the expression of osmotin in the transgenic plants under both the constitutive and stress-inducible promoters. Transgenic plants with the stress-inducible promoter were observed to better tolerate salt and drought stress than those with the constitutive promoter. Transgenic plants when subjected to simulated salinity and drought stress conditions showed better cellular membrane stability (CMS) and photosynthetic yield than non-transgenic plants under conditions of both salinity and drought stress. Proline levels were very high in transgenic plants with the constitutive promoter relative to those with the stress-inducible promoter. Fungal challenge undertaken with three fungal species known to cause serious losses to mulberry cultivation, namely, Fusarium pallidoroseum, Colletotrichum gloeosporioides and Colletotrichum dematium, revealed that transgenic plants with osmotin under control of the constitutive promoter had a better resistance than those with osmotin under the control of the stress-inducible promoter. Evaluation in next generation was undertaken by studying bud break in transgenic and non-transgenic plants under simulated drought (2% polyethylene glycol) and salt stress (200 mM NaCl) conditions. The axillary buds of the selected transgenic lines had a better bud break percentage under stressed conditions than buds from non-transgenic mulberry lines. A biotic assay with Bombyx mori indicated that osmotin protein had no undesirable effect on silkworm rearing and feeding. We therefore conclude that 35S transgenic plants are better suited for both abiotic stress also biotic challenges (fungal), while the rd29A transgenic plants are more responsive to drought.  相似文献   

7.
Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.  相似文献   

8.
Synková  H.  Pechová  R.  Valcke  R. 《Photosynthetica》2003,41(1):117-126
Changes in chloroplast ultrastructure and total content of endogenous cytokinins (CK) were studied during different phases of plant development in transgenic Pssu-ipt tobacco (Nicotiana tabacum L. cv. Petit Havana SR1). Permanent overproduction of CK was found in both rooted (SE) and grafted (G) Pssu-ipt plants in all phases of plant development with the peak in vegetative and flowering phase in the latter ones. No such a correlation was observed in SE on the contrary to control non-transgenic plants (SR1) and grafts (SRG), which showed also CK increase at juvenile and flowering phases. No significant differences in parameters of chloroplast ultrastructure, such as length of chloroplast, starch content, granum width, and number of thylakoids per granum, were proved between chloroplasts from young mature leaves of control and transgenic tobacco during plant ontogeny. Nevertheless, several anomalies in the ultrastructure of cell organelles were found in Pssu-ipt tobacco. Amoeboid shape of chloroplasts was often observed in connection with tubular clusters resembling peripheral reticulum. The distinct crystalline structures located in chloroplasts might be formed by LHC protein aggregates. Smaller crystals of unknown composition were found also in mitochondria. Numerous crystalline cores were present in peroxisomes. The alterations might be the result of imbalance of phytohormone content, degradation effect of CK overproduction, or the example of acclimation to permanent stress.  相似文献   

9.
In order to understand the role of cytosolic antioxidant enzymes in drought stress protection, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants overexpressing cytosolic Cu/Zn-superoxide dismutase (cytsod) (EC 1.15.1.1) or ascorbate peroxidase (cytapx) (EC 1.11.1.1) alone, or in combination, were produced and tested for tolerance against mild water stress. The results showed that the simultaneous overexpression of Cu/Znsod and apx or at least apx in the cytosol of transgenic tobacco plants alleviates, to some extent, the damage produced by water stress conditions. This was correlated with higher water use efficiency and better photosynthetic rates. In general, oxidative stress parameters, such as lipid peroxidation, electrolyte leakage, and H(2)O(2) levels, were higher in non-transformed plants than in transgenic lines, suggesting that, at the least, overexpression of cytapx protects tobacco membranes from water stress. In these conditions, the activity of other antioxidant enzymes was induced in transgenic lines at the subcellular level. Moreover, an increase in the activity of some antioxidant enzymes was also observed in the chloroplast of transgenic plants overexpressing cytsod and/or cytapx. These results suggest the positive influence of cytosolic antioxidant metabolism on the chloroplast and underline the complexity of the regulation network of plant antioxidant defences during drought stress.  相似文献   

10.
11.
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme of ABA biosynthesis in higher plants. A NCED gene, SgNCED1, was overexpressed in transgenic tobacco plants which resulted in 51–77% more accumulation of ABA in leaves. Transgenic tobacco plants decreased stomatal conductance, transpiration rate, and photosynthetic rate but induced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate-peroxidase (APX). Hydrogen peroxide (H2O2) and nitric oxide (NO) in leaves were also induced in the transgenic plants. Compared to the wild-type control, the transgenic plants improved growth under 0.1 M mannitol-induced drought stress and 0.1 M NaCl-induced salinity stress. It is suggested that the ABA-induced H2O2 and NO generation upregulates the stomatal closure and antioxidant enzymes, and therefore increases drought and salinity tolerance in the transgenic plants.  相似文献   

12.
Members of the aldo–keto reductase family including aldose reductases are involved in antioxidant defense by metabolizing a wide range of lipid peroxidation-derived cytotoxic compounds. Therefore, we produced transgenic wheat genotypes over-expressing the cDNA of alfalfa aldose reductase gene. These plants consequently exhibit 1.5–4.3 times higher detoxification activity for the aldehyde substrate. Permanent drought stress was generated in the greenhouse by growing wheat plants in soil with 20 % water capacity. The control and stressed plants were monitored by a semi automatic phenotyping platform providing computer-controlled watering, digital and thermal imaging. Calculation of biomass values was based on the correlation (R 2 = 0.7556) between fresh weight and green pixel-based shoot surface area. The green biomass production by plants of the three transgenic lines was 12–26–41 % higher than the non-transgenic plants’ grown under water limitation. Thermal imaging of stressed non-transgenic plants indicated an elevation in the leaf temperature. The thermal status of transformants was similar at both normal and suboptimal water regime. In drought, the transgenic plants used more water during the growing season. The described phenotyping platform provided a comprehensive data set demonstrating the improved physiological condition of the drought stressed transgenic wheat plants in the vegetative growth phase. In soil with reduced water capacity two transgenic genotypes showed higher seed weight per plant than the control non-transgenic one. Limitation of greenhouse-based phenotyping in analysis of yield potential is discussed.  相似文献   

13.
Osmotin or osmotin-like proteins have been shown to be induced in several plant species in response to various types of biotic and abiotic challenges. The protein is generally believed to be involved in protecting the plant against these stresses. Although some understanding of the possible mechanism underlying the defense function of osmotin against biotic stresses is beginning to emerge, its role in abiotic stress response is far from clear. We have transformed cotton plants with a tobacco-osmotin gene, lacking the sequence encoding its 20 amino acid-long, C-terminal vacuolar-sorting motif, under the control of CaMV 35S promoter. Apoplastic secretion of the recombinant protein was confirmed and the plants were evaluated for their ability to tolerate drought conditions. Under polyethylene glycol-mediated water stress, the osmotin-expressing seedlings showed better growth performance. The transformants showed a slower rate of wilting during drought and faster recovery following the termination of dry conditions in a greenhouse setting. During drought, the leaves from transgenic plants had higher relative water content and proline levels, while showing reduced H2O2 levels, lipid peroxidation and electrolyte leakage. Importantly, following a series of dry periods, the osmotin transformants performed better in terms of most growth and developmental parameters tested. Most relevant, the fiber yield of transgenic plants did not suffer as much as that of their non-transgenic counterparts under drought conditions. The results provide direct support for a protective role of osmotin in cotton plants experiencing water stress and suggest a possible way to achieve tolerance to drought conditions by means of genetic engineering. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic proteins found primarily in plants. The barley hva1 gene encodes a group 3 LEA protein and is induced by ABA and water deficit conditions. We report here the over expression of hva1 in mulberry under a constitutive promoter via Agrobacterium-mediated transformation. Molecular analysis of the transgenic plants revealed the stable integration and expression of the transgene in the transformants. Transgenic plants were subjected to simulated salinity and drought stress conditions to study the role of hva1 in conferring tolerance. The transgenic plants showed better cellular membrane stability (CMS), photosynthetic yield, less photo-oxidative damage and better water use efficiency as compared to the non-transgenic plants under both salinity and drought stress. Under salinity stress, transgenic plants show many fold increase in proline concentration than the non-transgenic plants and under water deficit conditions proline is accumulated only in the non-transgenic plants. Results also indicate that the production of HVA1 proteins helps in better performance of transgenic mulberry by protecting membrane stability of plasma membrane as well as chloroplastic membranes from injury under abiotic stress. Interestingly, it was observed that hva1 conferred different degrees of tolerance to the transgenic plants towards various stress conditions. Amongst the lines analysed for stress tolerance transgenic line ST8 was relatively more salt tolerant, ST30, ST31 more drought tolerant, and lines ST11 and ST6 responded well under both salinity and drought stress conditions as compared to the non-transgenic plants. Thus hva1 appears to confer a broad spectrum of tolerance under abiotic stress in mulberry.  相似文献   

15.
Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress.  相似文献   

16.
李大红    刘卉  杨艳丽  甄萍萍  梁建生 《植物学报》2008,25(6):648-655
RACK1是一种多功能支架蛋白, 广泛参与植物生长发育过程的调节。利用反义RNA技术抑制水稻(Oryz a sativa)RACK1基因的表达, 分析了RACK1基因在响应干旱胁迫中的功能。采用实时定量PCR对获得的转基因植株的RACK1基因表达进行分析, 结果表明转基因水稻RACK1基因表达受抑制程度达到50%左右。与非转基因水稻(对照)相比, 转基因水稻耐干旱能力强, 膜脂过氧化程度低且丙二醛的含量少, SOD活性高。这些结果表明, RACK1蛋白负调节水稻对干旱胁迫的耐受过程, 并且这种调节作用在很大程度上与植株体内的氧化还原系统有关。  相似文献   

17.
Trehalose is a non-reducing disaccharide of glucose that functions as a protectant in the stabilization of biological structures and enhances the tolerance of organisms to abiotic stress. In the present study, we report on the expression of the Grifolafrondosa Fr. trehalose synthase (TSase) gene for manipulating abiotic stress tolerance in tobacco (Nicotiana tabaccum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and was transferred into tobacco by Agrobacterium tumefaciens EHA105. Compared with non-transgenic plants, transgenic plants were able to accumulate high levels of products of trehalose, which were increased up to 2.126-2.556 mg/g FW, although levels were undetectable in non-transgenic plants. This level of trehalose in transgenic plants was 400-fold higher than that of transgenic tobacco plants cotransformed with Escherichia coli TPS and TPP on independent expression cassettes, twofold higher than that of transgenic rice plants transformed with a bifunctional fusion gene (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of E. coli, and 12-fold higher than that of transgenic tobacco plants transformed the yeast TPS1 gene.It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and had morphological alterations of their roots. Interestingly, our transgenic plants have obvious morphological changes, including thick and deep-coloured leaves, but show no growth inhibition; moreover, these morphological changes can restore to normal type in T2 progenies. Trehalose accumulation in 35S-35S:TSase plants resulted in increased tolerance to drought and salt, as shown by the results of tests on drought, salt tolerance, and drought physiological indices, such as water content in excised leaves, malondialdehyde content, chlorophyll a and b contents, and the activity of superoxide dismutase and peroxidase in excised leaves. These results suggest that transgenic plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought and salt.  相似文献   

18.
The mechanism behind enhanced salt tolerance conferred by the overexpression of glyoxalase pathway enzymes was studied in transgenic vis-à-vis wild-type (WT) plants. We have recently documented that salinity stress induces higher level accumulation of methylglyoxal (MG), a potent cytotoxin and primary substrate for glyoxalase pathway, in various plant species [Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K. and Sopory, S.K. (2005) MG levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 337, 61-67]. The transgenic tobacco plants overexpressing glyoxalase pathway enzymes, resist an increase in the level of MG that increased to over 70% in WT plants under salinity stress. These plants showed enhanced basal activity of various glutathione related antioxidative enzymes that increased further upon salinity stress. These plants suffered minimal salinity stress induced oxidative damage measured in terms of the lipid peroxidation. The reduced glutathione (GSH) content was high in these transgenic plants and also maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio under salinity. Manipulation of glutathione ratio by exogenous application of GSSG retarded the growth of non-transgenic plants whereas transgenic plants sustained their growth. These results suggest that resisting an increase in MG together with maintaining higher reduced glutathione levels can be efficiently achieved by the overexpression of glyoxalase pathway enzymes towards developing salinity stress tolerant plants.  相似文献   

19.
The effect of arbuscular mycorrhiza (AM) on the phytoextraction efficiency of transgenic tobacco with increased ability to tolerate and accumulate cadmium (Cd) was tested in a pot experiment. The tobacco plants bearing the yeast metallothionein CUP1 combined with a polyhistidine cluster were compared to non-transgenic tobacco of the same variety at four Cd concentrations in soil, non-inoculated or inoculated with two isolates of the AM fungus Glomus intraradices. Mycorrhizal inoculation improved the growth of both the transgenic and non-transgenic tobacco and decreased Cd concentrations in shoots and root to shoot translocation. Differences were found between the two AM fungal isolates: one isolate supported more efficient phosphorus uptake and plant growth in the soil without Cd addition, while the other isolate alleviated the inhibitory effect of cadmium on plant growth. The resulting effect of inoculation on Cd accumulation was dependent on Cd level in soil and differed between the more Cd tolerant transgenic plants and the less tolerant non-transgenic plants. Mycorrhiza mostly decreased the phytoextraction efficiency of transgenic plants while increased that of non-transgenic plants at Cd levels in soil inhibitory to tobacco growth. Mechanisms of the observed effects of inoculation on growth and Cd uptake are discussed as well as the possible implications of the results for the exploitation of AM in phytoextraction of heavy metals from contaminated soils.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号