首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We consider whether changes in population-genetic structure through the life cycle of Cecropia obtusifolia, a tropical pioneer tree, reflect its gap-dependent demography and the role of evolutionary processes that are important for this species. We asked whether the spatial scale at which population-genetic subdivision occurs corresponds to the scale of habitat patchiness created by gap dynamics; whether patterns of seed dispersal and storage in the soil affect spatial genetic patterns; and whether spatial genetic patterns change through the species life cycle. We estimated Wright's F-statistics for six successive life-history stages for individuals grouped into subpopulations according to occurrence in natural gaps, physical proximity, or occurrence within large quadrats. For each life stage, FST-statistics were significantly higher when individuals were grouped by gaps, although concordant patterns across life stages for the three grouping methods were obtained. This supports the hypothesis that patchy recruitment in gaps or among-gap heterogeneity influences the species' genetic structure. F-statistics of seeds collected from females before dispersal (tree seeds), seed-rain seeds, soil seeds, seedlings, juveniles, and adults grouped by gaps, were, respectively: FIT = 0.004, 0.160, 0.121, 0.091, –0.0002, –0.081; FIS = –0.032, 0.124, 0.118, 0.029, –0.016, –0.083; and FST = 0.035, 0.041, 0.003, 0.063, 0.015, 0.002. Spatial genetic differentiation in rain seeds was not significantly lower than that of tree seeds. The loss of genetic structure in the soil seed bank, relative to that found in the seed rain may be due to sampling artifacts, but alternative explanations, such as microsite selection or temporal Wahlund effect are also discussed. If structure among soil seeds is unbiased, the peak in seedling FST may be due to microsite selection. FIS of seeds in the rain and soil were significantly greater than zero. A Wahlund effect is the most likely cause of these positive FIS values. Such fine-scale substructuring could be caused by correlated seed deposition by frugivores. The decrease in FIS from seedlings to adults could result from loss of fine-scale genetic structure during stand thinning or from selection.  相似文献   

2.
Genetic structure and diversity can reveal the demographic and selective forces to which populations have been exposed, elucidate genetic connections among populations, and inform conservation strategies. Beds of the clonal marine angiosperm Zostera marinaL. (eelgrass) in Chesapeake Bay (Virginia, USA) display significant morphological and genetic variation; abundance has fluctuated widely in recent decades, and eelgrass conservation is a major concern, raising questions about how genetic diversity is distributed and structured within this metapopulation. This study examined the influence of bed age (<65years versus<6years) and size (>100ha versus<10ha) on morphological and genetic (allozyme) structure and diversity within Chesapeake Bay eelgrass beds. Although both morphology and genetic diversity varied significantly among individual beds (F ST=0.198), neither varied consistently with bed age or size. The Chesapeake eelgrass beds studied were significantly inbred (mean F IS=0.680 over all beds), with inbreeding in old, small beds significantly lower than in other bed types. Genetic and geographic distances within and among beds were uncorrelated, providing no clear evidence of isolation by distance at the scale of 10's of km. These results suggest that local environmental conditions have a greater influence on plant morphology than do bed age or size. They support the hypotheses that eelgrass beds are established by multiple founder genotypes but experience little gene flow thereafter, and that beds are maintained with little loss of genetic diversity for up to 65 years. Since phenotypic and genotypic variation is partitioned among beds of multiple ages and sizes, eelgrass conservation efforts should maximize preservation of diversity by minimizing losses of all beds.  相似文献   

3.
Long-term ecological data were used to evaluate the relative importance of movements, breeding structure, and reproductive ecological factors to the degree of spatial and age-specific variation in genetic characteristics of painted turtles (Chrysemys picta) on the E. S. George Reserve in southeastern Michigan. Estimates of the degree of spatial genetic structuring were based on the proportion of total genotypic variance partitioned within and between subpopulations (inferred from hierarchical F-statistics based on variation at 18 protein loci), and in terms of gene correlations (co-ancestry among individuals derived from reproductive data on full-sib families of females nesting at specific nesting areas). Little variation in allele frequency was observed among turtles from different marshes (Fmt = 0.003), though significant variation was observed among turtles from different nesting areas associated with each marsh (Fnm = 0.046). Gene correlations among individuals within nesting areas varied greatly over years (0.032-0.171; mean = 0.069) and were negatively correlated to the proportion of females that successfully nested during each year. General concordance between independent estimates of genotypic correlations (i.e., Fnm derived from protein electrophoretic variation vs. mean co-ancestry) suggests that allozyme data, when collected over spatial scales consistent with species behavioral characteristics and reproductive ecology, may accurately reflect the apportionment of gene diversity within and among subpopulations. The magnitude and patterning of allelic variation among nesting areas and individuals appears to be primarily a function of gametic correlations among members of full-sib families, irrespective of the degree of gene flow or female nesting-site fidelity. Comparisons of genetic characteristics among 11 cohorts (1974-1984) revealed that heterozygosity (H) and inbreeding coefficients (F) varied greatly. Cohort estimates of H and F were correlated to female nesting success and to estimates of co-ancestry for the same years. Results clearly reflect the concomitant importance of ecological factors (principally the proportion of the female population that successfully produce offspring during each year) in determining the magnitude and patterning of gene correlations within and among groups, and to the genotypic composition of offspring born during each year.  相似文献   

4.
Genetic structure and inferred rates of gene flow in macrogeographic populations of the eastern tent caterpillar Malacosoma americanum were analyzed at two hierarchical scales: local demes and regional subpopulations. Wright's F-statistics were used to estimate population genetic structure using multilocus genotypic data generated electrophoretically. Estimated values of FST and the distribution of private alleles were then used to obtain indirect estimates of gene flow. We found modest, though significant, genetic structure at both spatial scales, a pattern consistent with high rates of gene flow over the large distances involved. Modest values obtained for Nei's genetic distance also suggested high levels of gene flow across the range of this species, although some gene-flow restriction resulting from isolation by distance was suggested by a positive regression of genetic distance on geographic distance. The observed homogeneity at enzyme loci across the range of M. americanum parallels the reported uniformity in morphology, suggesting a general absence of local genetic differentiation in this widely distributed species. The genetic homogeneity observed in this wide-ranging insect is discussed in terms of organism-specific environmental experience at different spatial scales. Some organisms occupying apparently heterogeneous environments may ameliorate unsuitable local conditions through microhabitat selection or behavioral modification of their microenvironment. This may be accomplished in M. americanum through group shelter construction and behavioral thermoregulation, closely tying thermoregulation to social biology in this species. If in this way the tent helps produce an effectively homogeneous environment for this species across its extensive range, this system may provide a unique example of how social behavior can influence the distribution of genetic variation in a population.  相似文献   

5.
To examine the effects of seed dispersal on spatial genetic structure, we compare three sympatric species of forest herbs in the family Apiaceae whose fruits differ widely in morphological adaptations for animal-attached dispersal. Cryptotaenia canadensis has smooth fruits that are gravity dispersed, whereas Osmorhiza claytonii and Sanicula odorata fruits have appendages that facilitate their attachment to animals. The relative seed-dispersal ability among species, measured as their ability to remain attached to mammal fur, is ranked Sanicula > Osmorhiza > Cryptotaenia. We use a nested hierarchical sampling design to analyze genetic structure at spatial scales ranging from a few meters to hundreds of kilometers. Genetic differentiation among population subdivisions, estimated by average genetic distance and hierarchical F-statistics, has an inverse relationship with dispersal ability such that Cryptotaenia > Osmorhiza > Sanicula. In each species, genetic differentiation increases with distance among population subdivisions. Stochastic variation in gene flow, arising from seed dispersal by attachment to animals, may partly explain the weak relationship between pairwise spatial and genetic distance among populations and heterogeneity in estimates of single locus F-statistics. A hierarchical island model of gene flow is invoked to describe the effects of seed dispersal on population genetic structure. Seed dispersal is the predominant factor affecting variation in gene flow among these ecologically similar, taxonomically related species.  相似文献   

6.
Herbivorous insects that use the same host plants as larvae and adults can have a subdivided population structure that corresponds to the distribution of their hosts. Having a subdivided population structure favors local adaptation of subpopulations to small-scale environmental differences and it may promote their genetic divergence. In this paper, I present the results of a hierarchical study of population structure in a montane willow leaf beetle, Chrysomela aeneicollis (Coleoptera: Chrysomelidae). This species spends its entire life associated with the larval host (Salix spp.), which occurs in patches along high-elevation streams and in montane bogs. I analyzed the genetic differentiation of C. aeneicollis populations along three drainages in the Sierra Nevada mountains of California at five enzyme loci: ak-1, idh-2, mpi-1, pgi-1, and pgm-1, using recent modifications of Wright's F-statistics. My results demonstrated significant differentiation (FST = 0.043) among drainages that are less than 40 kilometers apart. One locus, pgi-1, showed much greater differentiation than the other four (FST = 0.412), suggesting that it is under natural selection. C. aeneicollis populations were also subdivided within drainages, with significant differentiation 1) among patches of willows (spanning less than three kilometers) and 2) in some cases, among trees within a willow patch. My results demonstrate that this species has the capacity to adapt to local environmental variation at small spatial scales.  相似文献   

7.
 The concept of the partitioning of genetic diversity into a component within and a component among populations (F ST - or G ST -statistics) can be easily expanded to compute the contribution of single subpopulations to total gene diversity. A subpopulation contributes to total gene diversity with its single-population gene diversity plus the (weighted) mean of Nei’s minimum genetic distances to all subpopulations. The suggested method allows one to unambiguously rank subpopulations according to the amount they contribute to the total gene diversity. Genetic polymorphisms at four isozyme gene loci of Alnus acuminata in Costa Rica are used to illustrate the procedure and its biological interpretation. Received: 15 August 1998 / Accepted: 8 September 1998  相似文献   

8.
Naturally patchy ecosystems are models for other systems currently undergoing anthropogenic habitat fragmentation. Understanding patterns of gene flow in these model systems can help us manage species and ecosystems threatened by human impacts. The mound springs of central Australia represent such a natural model ecosystem, supporting a unique aquatic fauna distributed within an inhospitable arid landscape. Moreover, these springs are being impacted by over extraction of groundwater, providing a unique opportunity to look at dispersal in a patchy habitat that is changing. The present study represents the first fine scale analysis of gene flow under different scenarios of habitat connectivity for the endangered mound spring snail, Fonscochlea accepta. Within a single spring group pairwise estimates of F ST between springs were very low (ave 0.015) with no association found between genetic distance and a series of geographical distance matrices based on the degree of habitat connectivity among the springs: results implying unstructured dispersal and limited population isolation. However, results from Bayesian assignment tests showed that on average approximately 97% of snails were assigned to their spring of origin. In a preliminary analysis at broader geographic scales (among spring groups) the results from F ST estimates, Mantel correlation analyses and assignment tests all suggest much stronger and geographically correlated population structuring. While varying results from F-statistics and Bayesian analyses stem from the different information they utilise, together they provide data on contemporary and historical estimates of gene flow and the influence of landscape dynamics on the spatial genetic patterning of the springs.  相似文献   

9.
Analyses of fine-scale and macrogeographic genetic structure in plant populations provide an initial indication of how gene flow, natural selection, and genetic drift may collectively influence the distribution of genetic variation. The objective of our study is to evaluate the spatial dispersion of alleles within and among subpopulations of a tropical shrub, Psychotria officinalis (Rubiaceae), in a lowland wet forest in Costa Rica. This insect-pollinated, self-incompatible understory plant is dispersed primarily by birds, some species of which drop the seeds immediately while others transport seeds away from the parent plant. Thus, pollination should promote gene flow while at least one type of seed dispersal agent might restrict gene flow. Sampling from five subpopulations in undisturbed wet forest at Estación Biologíca La Selva, Costa Rica, we used electrophoretically detected isozyme markers to examine the spatial scale of genetic structure. Our goals are: 1) describe genetic diversity of each of the five subpopulations of Psychotria officinalis sampled within a contiguous wet tropical forest; 2) evaluate fine-scale genetic structure of adults of P. officinalis within a single 2.25-ha mapped plot; and 3) estimate genetic structure of P. officinalis using data from five subpopulations located up to 2 km apart. Using estimates of coancestry, statistical analyses reveal significant positive genetic correlations between individuals on a scale of 5 m but no significant genetic relatedness beyond that interplant distance within the studied subpopulation. Multilocus estimates of genetic differentiation among subpopulations were low, but significant (Fst = 0.095). Significant Fst estimates were largely attributable to a single locus (Lap-2). Thus, multilocus estimates of Fst may be influenced by microgeographic selection. If true, then the observed levels of IBD may be overestimates.  相似文献   

10.
The amount of gene flow among local populations partly determines the relative importance of genetic drift and natural selection in the differentiation of such populations. Land snails, because of their limited powers for dispersal, may be particularly likely to show such differentiation. In this study, we directly estimate gene flow in Albinaria corrugata, a sedentary, rock-dwelling gastropod from Crete, by mark-recapture studies. In the same area, 23 samples were taken and studied electrophoretically for six polymorphic enzyme loci. The field studies indicate that the population structure corresponds closely to the stepping-stone model: demes are present on limestone boulders that are a few meters apart, and dispersal takes place mainly between adjacent demes. Average deme size (N) is estimated at 29 breeding individuals and the proportion of migrants per generation at 0.195 (Nm = 5.7). We find no reason to assume long-distance dispersal, apart from dispersal along occasional stretches of suitable habitat. Genetic subdivision of the population, as derived from FST values, corresponds to the direct estimate only at the lowest spatial level (distance between sample sites < 10 m), where values for Nm of 5.4 and 17.6 were obtained. In contrast, at the larger spatial scales, FST values give gene-flow estimates that are incompatible with the expected amount of gene flow at these scales. We explain these discrepancies by arguing that gene flow is in fact extremely limited, making correct estimates of Nm from FST impossible at the larger spatial scales. In view of these low levels of gene flow, it is concluded that both genetic drift and natural selection may play important roles in the genetic differentiation of this species, even at the lowest spatial scales.  相似文献   

11.
Orchid seeds are minute, dust-like, wind-borne and, thus, would seem to have the potential for long-distance dispersal. Based on this perception, one may predict near-random spatial genetic structure within orchid populations. In reality we do not know much about seed dispersal in orchids and the few empirical studies of fine-scale genetic structure have revealed significant genetic structure at short distances (< 5m), suggesting that most seeds of orchids fall close to the maternal plant. To obtain more empirical data on dispersal, Ripley’s L(d)-statistics, spatial autocorrelation analyses (coancestry, fij analyses) and Wright’s F statistics were used to examine the distribution of individuals and the genetic structure within two populations of the terrestrial orchid Orchis cyclochila in southern Korea. High levels of genetic diversity (He = 0.210) and low between-population variation were found (FST = 0.030). Ripley’s L(d)-statistics indicated significant aggregation of individuals, and patterns varied depending on populations. Spatial autocorrelation analysis revealed significant positive genetic correlations among individuals located <1 m, with mean fij values expected for half sibs. This genetic structure suggests that many seeds fall in the immediate vicinity of the maternal plant. The finding of significant fine-scale genetic structure, however, does not have to preclude the potential for the long distance dispersal of seeds. Both the existence of fine-scale genetic structure and low FST are consistent with a leptokurtic distribution of seed dispersal distances with a very flat tail.  相似文献   

12.
Using our results and literature data on multilocus DNA fingerprinting, we propose a method of obtaining unbiased estimates of the between-population genetic similarity index and a measure of population subdivision based on modified Wright's F ST-statistics. On the basis of multiple comparison T 2 Hotelling's test and Holmes' procedure, the F ST-statistics was applied to assess differentiation of four (Pacific and Atlantic) subpopulations of humpback whale Megaptera novaeangliae, six populations of Californian island gray fox Urocyon littoralis, and geographically isolated Ob' and Yakutia populations of Siberian white crane Crus leucogeranus. It was shown that the regional humpback whale subpopulations do not constitute a single panmictic unit (P < 10–4). The subdivision index of the Pacific and Atlantic populations expressed in terms of F-statistics varied from 0.101 to 0.157. The differentiation estimates for the island fox populations, which ranged from 0.2109 to 0.4027, indicate that subdivision of these populations is a function of the distance between the islands, island size, and population size. In particular, the smallest and the greatest differences were found respectively between the populations of the geographically closest northern islands (F ST = 0.2157, F ST = 0.2109) and between those of the most distant northern and southern islands (F ST = 0.4027, F ST = 0.3869). Subdivision of the island populations with minimum areas and low population number was intermediate (F ST = 0.3789). Mean values of heterozygosity, within-population genetic similarity index, and the number of coinciding fragments for two random individuals of Siberian white crane from the Ob' and Yakutia population were not statistically significantly different (P 0.852, P 0.491, P 0.325). However, pairwise comparisons of mean F ST values indicated that the differentiation estimates for samples from these populations fall within the limits of population subdivision (P = 0.01). The subdivision estimate (0.108–0.133) of various groups of Siberian white cranes is comparable to interregional subdivision of humpback whale. Based on the results of this study, we recommend the approach based on modified Wright's F ST-statistics for studying genetic population structure aimed at detecting population subdivision.  相似文献   

13.
The present study investigated the fine‐scale population genetic structure of sympatric asterinid sea stars with contrasting modes of larval development (benthic versus pelagic). Parvulastra exigua lacks a dispersive life phase yet is one of the worlds most widely distributed and abundant sea stars, whereas Meridiastra calcar, a sea star with a dispersive larva, has a more limited regional scale distribution. Populations of P. exigua sampled from tide pools on three adjacent headlands showed significant genetic substructure (mitochodrial DNA control region) at fine spatial scales (tide pools < 300 m apart: FST = 0.249, P < 0.01; headlands 5–15 km apart: FST = 0.125, P = 0.04). As expected, M. calcar populations sampled from the same headlands did not exhibit significant genetic structuring (FST = 0.029, P = 0.14). The life‐history traits of P. exigua, a mixed mating system (selfing + outcrossing), pseudocopulation among closely‐related conspecifics, and an entirely benthic life cycle with a philopatric larva, undoubtedly influence its strong genetic structure across fine spatial scales. Localized genetic structure, especially at the very fine‐scale of tide pools, would not be detected in the more typical regional scale approaches adopted by most studies of marine invertebrate populations. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●●, ●●–●●.  相似文献   

14.
Termite alates are thought to be poor active flyers, and this should lead to considerable genetic differentiation on small spatial scales. However, using four microsatellite loci for the termite Macrotermes michaelseni we found low values of genetic differentiation (FST) across a spatial scale of even more than 50 km. Genetic differentiation between populations increased with spatial distance up to 50 km. Furthermore, up to this distance, the scatter around the linear regression of genetic differentiation versus spatial distance increased with spatial distance. This suggests that across such spatial distances gene flow and genetic drift are of about equal importance, and near equilibrium. Using a regional FST as well as the distance between populations with non-significant FST-values (up to 25 km), gene flow is sufficiently high so that populations may be regarded as panmictic on spatial scales of 25 to 50 km. The apparent contradiction between dispersal distances observed in the field and estimates of gene flow from genetic markers may be due to the masses of swarming alates. Assuming a leptokurtic distribution of dispersal distances, atleast some alates are expected to travel considerable distances, most likely by passive drift. Received 25 January 2005; revised 11 April 2005; accepted 26 April 2005.  相似文献   

15.
Genetic diversity is crucial for long‐term population persistence. Population loss and subsequent reduction in migration rate among the most important processes that are expected to lead to a reduction in genetic diversity and an increase in genetic differentiation. While the theory behind this is well‐developed, empirical evidence from wild populations is inconsistent. Using microsatellite markers, we compared the genetic structure of populations of an amphibian species, the midwife toad (Alytes obstetricans), in four Swiss regions where the species has suffered variable levels of subpopulation extirpation. We also quantified the effects of several geographic factors on genetic structure and used a model selection approach to ascertain which of the variables were important for explaining genetic variation. Although subpopulation pairwise FST‐values were highly significant even over small geographic scales, neither any of the geographic variables nor loss of subpopulations were important factors for predicting spatial genetic structure. The absence of a signature of subpopulation loss on genetic differentiation may suggest that midwife toad subpopulations function as relatively independent units.  相似文献   

16.
This paper presents an analysis of variance (ANOVA) approach by which estimation of F-statistics can be made from data with an arbitrary s-level hierarchical population structure. Assuming a complete random-effect model, a general ANOVA procedure is developed to estimate F-statistics as ratios of different variance components for all levels of population subdivision in the hierarchy. A generalized relationship among F-statistics is also derived to extend the well-known relationship originally found by Sewall Wright. Although not entirely free from the bias particular to small number of subdivisions at each hierarchy and extreme gene frequencies, the ANOVA estimators of F-statistics consider sampling effects at each level of hierarchy, thus removing the bias incurred in the other estimators that are commonly based on direct substitution of unknown gene frequencies by their sample estimates. Therefore, the ANOVA estimation procedure presented here may become increasingly useful in analyzing complex population structure because of increasing use of the estimated hierarchical F-statistics to infer genetic and demographic structures of natural populations within and among species.  相似文献   

17.
In order to test the potential ecological role of the Siculo-Tunisian Strait as a geographic barrier, the morphological and genetic variation of eight Tunisian samples of the sharpsnout seabream, Diplodus puntazzo, were studied, based on 23 truss network elements and 13 polymorphic allozyme loci. Significant morphological differences were observed between studied samples, especially between lagoon ones. Although genetic data did not support the detected morphometric variation, F-statistics indices (FIS and FST) revealed a significant departure from panmixia with heterozygote deficiencies and slight genetic differentiation between samples. Genetic results suggested the existence of moderate and local genetic heterogeneity that can be explained by the chaotic genetic patchiness hypothesis. Morphological and genetic results showed that the Siculo-Tunisian Strait does not seem to act as a barrier limiting the connectivity between the natural populations of D. puntazzo, at least at the scale of the Tunisian coast. Thus, the phenotypic variation identified in this study appears to be environmentally induced through the exploitation of different ecological niches and hydrodynamic constraints.  相似文献   

18.
In southern Kantoh, Japanese sika deer (Cervus nippon) are distributed discontinuously due to large urban areas and developed road networks. To assess the impact of habitat fragmentation on sika deer subpopulations, we examined mitochondrial D-loop sequences from 435 individuals throughout southern Kantoh. About 13 haplotypes were detected, and their distributions revealed spatial genetic structure. Significant genetic differentiation was observed among seven of eight subpopulations. We found no significant correlation between pairwise F ST and geographical distance among subpopulations. Genetic diversity indices suggested that seven of eight subpopulations had probably experienced population bottlenecks in the recent past. Therefore, and in the light of the results of a nested clade analysis of these haplotypes, we conclude that recent fluctuations in population size and the interruption of gene flow due to past and present habitat fragmentation have played major roles influencing the spatial genetic structure of the sika deer population. This is the first evidence of spatial genetic population structure in the highly fragmented sika deer population in Honshu, Japan.  相似文献   

19.
Interest in using native grass species for restoration is increasing, yet little is known about the ecology and genetics of native grass populations or the spatial scales over which seed can be transferred and successfully grown. The purpose of this study was to investigate the genetic structure within and among populations of Elymus glaucus in order to make some preliminary recommendations for the transfer and use of this species in revegetation and restoration projects. Twenty populations from California, Oregon, and Washington were analyzed for allozyme genotype at 20 loci, and patterns of variation within and among populations were determined. Allozyme variation at the species level was high, with 80% of the loci polymorphic and an average expected heterozygosity (an index of genetic diversity) of 0.194. All but two of the populations showed some level of polymorphism. A high degree of population differentiation was found, with 54.9% of the variation at allozyme loci partitioned among populations (Fst= 0.549). A lesser degree of genetic differentiation among closely spaced subpopulations within one of the populations was also demonstrated (Fst= 0.124). Self-pollination and the patchy natural distribution of the species both likely contribute to the low level of gene flow (Nm= 0.205) that was estimated. Zones developed for the transfer of seed of commercial conifer species may be inappropriate for transfer of E. glaucus germplasm because conifer species are characterized by high levels of gene flow. Limited gene flow in E. glaucus can facilitate the divergence of populations over relatively small spatial scales. This genetic differentiation can be due to random genetic drift, localized selective pressures, or both. In order to minimize the chances of planting poorly adapted germplasm, seed of E. glaucus may need to be collected in close proximity to the proposed restoration site.  相似文献   

20.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号