首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stable isotope ratios (δ13C and δ15N) were analyzed from the bone collagen of individuals (n = 8) from a Lapita burial ground (ca. 2800–2350 BP) on Watom Island, located off northeast New Britain in the Bismarck Archipelago. The aim of this study was to assess the diet and subsistence strategies of humans that lived during the later Lapita period in Near Oceania. To aid in the interpretation of the human diet we analyzed the stable isotope ratios of faunal material from the site (n = 27). We also aim to assess methods of animal husbandry at the site over time from an analysis of the stable isotope ratios (δ13C and δ15N) of pig bones (n = 22) from different temporal periods (Lapita, post‐Lapita, and late prehistoric). The protein diet of the humans consisted of marine organisms from the inshore environment and some deep‐water species, most likely marine turtle, in addition to higher trophic level terrestrial foods, likely pig and native animals (e.g., fruit bat, Cuscus and bandicoot). Although the sample sizes were small, females (n = 4) displayed more variable δ13C and δ15N values compared with males (n = 4), which may be associated with the movement of adult females to the island. The stable isotope analysis of the pig bones indicated that there were few differences between the diets of the pigs from the Lapita and post‐Lapita layers, suggesting that the method of pig husbandry was similar between these two periods and was likely relatively free‐range. Am J Phys Anthropol 157:30–41, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
A systematic dietary investigation during Danish Roman Iron Age (1‐375AD) is conducted by analyzing stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in the collagen of human and animal bone. The human sample comprises 77 individuals from 10 burial sites. In addition 31 samples of mammals and fish were analyzed from same geographical area. The investigation characterizes the human diet among different social groupings and analyses dietary differences present between sex, age, and site phase groups. Diachronically, the study investigates the Roman influences that had an effect on social structure and subsistence economy in both the Early and Late Period. Geographically the locations are both inland and coastal. The isotopic data indicate extremely uniform diet both between and within population groups from Early and Late Roman periods and the data are consistent throughout the Roman Iron Age. Protein consumption was dominated by terrestrial animals with no differences among social status, age, sex, or time period, while terrestrial plant protein only seems to have contributed little in the diet. Furthermore, the consumption of marine or aquatic resources does not seem to have been important, even among the individuals living next to the coast. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Stable isotopes (δ13C, δ15N, and δ34S) are used to characterize the diet of the adult individuals (n = 99) interred in the Namu burial ground located on the Polynesian outlier of Taumako (~300–750 BP). Polynesian outliers are islands on the fringe of Remote Oceania that were inhabited by a back migration of populations from Polynesia during prehistory. As a result of admixture with nearby island communities, little is known about the social structure and social diversity of the prehistoric inhabitants of Taumako. The distribution of prestige grave goods within the Namu cemetery has been used as evidence to support the premise that Taumakoan social structure was stratified like Polynesian societies. Here we test the hypothesis that “wealthy” individuals and males will display isotopic ratios indicative of the consumption of “high status” foods in the Pacific islands such as pork, chicken, sea turtle, and pelagic fish. The isotope results suggest the δ34S values were diagenetically altered, possibly an effect of volcanism. The carbon and nitrogen stable isotope ratios indicate that the diet of all the individuals included a mixture of C3 terrestrial plant foods (likely starchy staples such as yam, taro, and breadfruit, in addition to nuts) and a variety of marine resources, including reef and pelagic fish. The stable isotope results indicate that wealthy individuals and males were eating more foods from higher trophic levels, interpreted as being high status animal foods. The socially differentiated food consumption patterns are discussed within a Pacific island context. Am J Phys Anthropol 151:589–603, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Increasing interest in the marine trophic dynamics of Pacific salmon has been motivated by the recognition of their sensitivity to changing climate and to the competitive effects of hatchery fish on wild stocks. It has become more common to use stable isotopes to supplement traditional diet studies of salmon in the ocean; however, there have been no integrated syntheses of these data to determine whether stable isotope analyses support the existing conventional wisdom of feeding strategies of the Pacific salmon. We performed a meta-analysis of stable isotope data to examine the extent of trophic partitioning among five species of Pacific salmon during their marine lives. Pink, sockeye, and chum salmon showed very high overlap in resource use and there was no consistent evidence for chum relying on alternative food webs dominated by gelatinous zooplankton. δ15N showed that Chinook and coho salmon fed at trophic levels higher than the other three species. In addition, these two species were distinctly enriched in 13C, suggesting more extensive use of coastal food webs compared to the more depleted (pelagic) signatures of pink, sockeye, and chum salmon. This paper presents the first synthesis of stable isotope work on Pacific salmon and provides δ15N and δ13C values applicable to research on the fate of the marine derived nutrients these organisms transport to freshwater and riparian ecosystems.  相似文献   

5.
The δ13C values of atmospheric carbon dioxide (CO2) can be used to partition global patterns of CO2 source/sink relationships among terrestrial and oceanic ecosystems using the inversion technique. This approach is very sensitive to estimates of photosynthetic 13C discrimination by terrestrial vegetation (ΔA), and depends on δ13C values of respired CO2 fluxes (δ13CR). Here we show that by combining two independent data streams – the stable isotope ratios of atmospheric CO2 and eddy‐covariance CO2 flux measurements – canopy scale estimates of ΔA can be successfully derived in terrestrial ecosystems. We also present the first weekly dataset of seasonal variations in δ13CR from dominant forest ecosystems in the United States between 2001 and 2003. Our observations indicate considerable summer‐time variation in the weekly value of δ13CR within coniferous forests (4.0‰ and 5.4‰ at Wind River Canopy Crane Research Facility and Howland Forest, respectively, between May and September). The monthly mean values of δ13CR showed a smaller range (2–3‰), which appeared to significantly correlate with soil water availability. Values of δ13CR were less variable during the growing season at the deciduous forest (Harvard Forest). We suggest that the negative correlation between δ13CR and soil moisture content observed in the two coniferous forests should represent a general ecosystem response to the changes in the distribution of water resources because of climate change. Shifts in δ13CR and ΔA could be of sufficient magnitude globally to impact partitioning calculations of CO2 sinks between oceanic and terrestrial compartments.  相似文献   

6.
1. Anadromous salmon transport marine‐derived nutrients and carbon to freshwater and riparian ecosystems upon their return to natal spawning systems. The ecological implications of these subsidies on the trophic ecology of resident fish remain poorly understood despite broad recognition of their potential importance. 2. We studied the within‐year changes in the ration size, composition and stable isotope signature of the diets of two resident salmonids (rainbow trout, Oncorhynchus mykiss; Arctic grayling, Thymallus arcticus) before and after the arrival of sockeye salmon (Oncorhynchus nerka) to their spawning grounds in the Bristol Bay region of southwest Alaska. 3. Ration size and energy intake increased by 480–620% for both species after salmon arrived. However, the cause of the increases differed between species such that rainbow trout switched to consuming salmon eggs, salmon flesh and blowflies that colonized salmon carcasses, whereas grayling primarily ate more benthic invertebrates that were presumably made available because of physical disturbances by spawning salmon. 4. We also observed an increase in the δ15N of rainbow trout diets post‐salmon, but not for grayling. This presumably led to the observed increase in the δ15N of rainbow trout with increasing body mass, but not for grayling. 5. Using a bioenergetics model, we predicted that salmon‐derived resources contributed a large majority of the energy necessary for growth in this resident fish community. Furthermore, the bioenergetics model also showed how seasonal changes in diet affected the stable isotope ratios of both species. These results expand upon a growing body of literature that highlights the different pathways whereby anadromous salmon influence coastal ecosystems, particularly resident fish.  相似文献   

7.
The estuarine crocodile (Crocodylus porosus) is an apex predator across freshwater, estuarine and coastal environments. The impact of a changing C. porosus population upon the ecosystem is unknown, but due to large ontogenetic changes in body mass (>1000‐fold) their impact may be wide reaching and substantial. Here we investigated the relationship between diet, movement and body size in a population of C. porosus inhabiting a tidal river in northern Australia. Subcutaneous acoustic transmitters and fixed underwater receivers were used to determine the activity space and movement patterns of 42 individuals (202–451 cm in total length). There was no size‐related spatial partitioning among different sized crocodiles. Large individuals (snout–vent length (SVL): 160 cm < SVL < 188.5 cm) did, however, exhibit a much larger activity space than other size classes. Diet and individual specialization was assessed using the composition of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues with different turnover rates. There was a quadratic relationship between body size and δ15N, suggesting that medium‐sized individuals (110 cm < SVL < 160 cm) incorporated a greater proportion of high trophic prey into their diets than small (SVL < 110 cm) or large individuals (SVL > 160 cm). Tissue δ13C composition on the other hand was positively correlated with body size, indicating that different size classes were trophically linked to primary producers in different habitats. Individual‐level analyses showed that small crocodiles were generalist feeders while medium and large size classes specialized on particular prey items within the food webs they fed. The findings further our understanding of ontogenetic variation in C. porosus diet, and suggest that change in C. porosus population size or demographics may be influential at various levels across the local food web.  相似文献   

8.
Nitrogen stable isotopes analysis of individual bone collagen amino acids was applied to archeological samples as a new tool for assessing the composition of ancient human diets and calibrating radiocarbon dates. We used this technique to investigate human and faunal samples from the Kitakogane shell midden in Hokkaido, Japan (5,300–6,000 cal BP). Using compound‐specific nitrogen isotope analysis of individual amino acids, we aimed to estimate i) the quantitative contribution of marine and terrestrial protein to the human diet, and ii) the mean trophic level (TL) from which dietary protein was derived from marine ecosystems. Data were interpreted with reference to the amino acid trophic level (TLAA) model, which uses empirical amino acid δ15N from modern marine fauna to construct mathematical equations that predict the trophic position of organisms. The TLAA model produced realistic TL estimates for the Kitakogane marine animals. However, this model was not appropriate for the interpretation of human amino acid δ15N, as dietary protein is derived from both marine and terrestrial environments. Hence, we developed a series of relevant equations that considered the consumption of dietary resources from both ecosystems. Using these equations, the mean percentage of marine protein in the Kitakogane human diet was estimated to be 74%. Although this study is one of the first systematic investigations of amino acid δ15N in archeological bone collagen, we believe that this technique is extremely useful for TL reconstruction, palaeodietary interpretation, and the correction of marine reservoir effects for radiocarbon dating. Am J Phys Anthropol 143:31–40, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

12.
This study used naturally occurring carbon and nitrogen stable isotopes of teeth to study the diets of marine mammals. The isotopic ratios of nonchemically preserved teeth from eight species of marine mammals, representing 87 individuals that spanned the trophic continuum, were found to reflect nutritional sources. The δ13C signals distinguished animals that lived in waters dominated by different primary producers (e. g., seagrass, kelp, and phytoplankton), and δ15N values indicated the diet and trophic level of the species. This research suggests that isotopic signatures of teeth can be used in dietary studies to show differences and similarities among age classes, genders, geographic locations, and time periods.  相似文献   

13.
The ratios of 15N to 14N and 13C to 12C tend to be higher in marine than in terrestrial organisms. The concentrations of these isotopes in human bone collagen consequently can be used to make inferences about the contribution of marine and terrestrial resources to prehistoric diets. The utility of studying 15N/14N and 13C/12C ratios in conjunction with each other is illustrated by our analysis of 40 human burials from archaeological sites in the Santa Barbara Channel area of southern California. The mean delta 13C and delta 15N values (in per mil) of collagen from these skeletons decrease progressively from the Channel Islands (delta 13C = -14.0, delta 15N = +16.3) to the mainland coast (delta 13C = -14.5, delta 15N = +14.9) to the interior (delta 13C = -17.2, delta 15N = +10.9). These data suggest that Indians living on the Channel Islands during the late prehistoric period were heavily dependent on marine resources. The inhabitants of the mainland interior, in contrast, had a diet composed largely of terrestrial foods. From their isotope ratios, it appears that the Indians who lived on the mainland coast consumed a mixed diet containing substantial quantities of both marine and terrestrial resources. Differences in 15N/14N and 13C/12C ratios of individuals from mainland sites dating from the early and late prehistoric periods show that the marine component of the diet increased substantially through time. These isotopic data are consistent with pathological, faunal, and artifactual evidence of increased marine resource exploitation during the late prehistoric period.  相似文献   

14.
Green sturgeon (Acipenser medirostris) and white sturgeon (A. transmontanus) are closely related, sympatric species that inhabit the San Francisco estuary. Green sturgeon have a more marine life history but both species spawn in the Sacramento River and reside for some duration in San Francisco Bay. These sturgeons are of conservation concern, yet little is known about their dietary competition when they overlap in space and time. To examine evidence of dietary differentiation, we collected whole blood and blood plasma from 26 green sturgeon and 35 white sturgeon in San Francisco Bay. Using carbon and nitrogen stable isotope analyses, we compared their relative trophic levels and foraging locations along the freshwater to marine gradient. Sampling blood plasma and whole blood allowed comparison of dietary integration over shorter and longer time scales, respectively. Plasma and whole blood δ13C values confirmed green sturgeon had more marine dietary sources than white sturgeon. Plasma δ15N values revealed white sturgeon fed at lower trophic levels than green sturgeon recently, however, whole blood δ15N values demonstrated the two species fed at the same trophic level over longer time scales. Larger individuals of both species had higher δ13C values than smaller individuals, reflecting more marine food sources in adulthood. Length did not affect δ15N values of either species. Isotope analyses supported the more marine life history of green than white sturgeon and potentially highlight a temporary trophic differentiation of diet between species during and preceding the overlapping life stage in San Francisco Bay.  相似文献   

15.
We evaluated whether existing assumptions regarding the trophic ecology of a poorly‐studied predator guild, northwest (NW) Atlantic skates (family: Rajidae), were supported across broad geographic scales. Four hypotheses were tested using carbon (δ13C) and nitrogen (δ15N) stable isotope values as a proxy for foraging behavior: 1) species exhibit ontogenetic shifts in habitat and thus display a shift in 13C with differential use of the continental shelf; 2) species exhibit ontogenetic prey shifts (i.e. from smaller to larger prey items) and become enriched in 15N; 3) individuals acquire energy from spatially confined local resource pools and exhibit limited displacement; and 4) species exhibit similarly sized and highly overlapping trophic niches. We found some evidence for ontogenetic shifts in habitat‐use (δ13C) for thorny and little skate and diet (δ15N) of thorny and winter skate and hypothesize that individuals exhibit gradual trophic niche transition, especially in δ15N space, rather than a clear and distinct shift in diet throughout ontogeny. Spatial isoscapes generated for little, thorny, and winter skate highlighted distinct spatial patterns in isotopic composition across the coastal shelf. For little and thorny skate, patterns mimicked expected spatial variability in the isotopic composition of phytoplankton/POM, suggesting limited displacement and utilization of spatially confined resource pools. Winter skate, however, exhibited a much narrower range of δ13C and δ15N values, suggesting individuals may use resources from a more confined latitudinal range. Although high total trophic niche overlap was observed between some species (e.g. little and thorny skate), sympatric species (e.g. little and winter skate) exhibited a degree of trophic niche separation. These findings offer new insight into the trophic dynamics of a poorly‐studied, vulnerable group of predators, and highlight a need to re‐examine assumptions pertaining to aspects of their ecology.  相似文献   

16.
To examine how dietary patterns may have changed in the western Mediterranean through time, stable carbon and nitrogen isotope ratios were measured on extracted bone collagen from fauna (n = 75) and humans (n = 135) spanning four distinct chronological periods: Chalcolithic (c.2100–1600 BC), Punic (6th–2nd/1st century BC), Late Antiquity‐Early Byzantine (4th–7th century AD), and Islamic (c.10th–13th century AD) on the islands of Ibiza and Formentera, Spain. The Chalcolithic, Punic, and Late Antiquity‐Byzantine societies all showed evidence of a predominately C3 terrestrial‐based diet with a possible input of a small amount of marine and/or C4 dietary resources. In contrast, the Islamic population on Ibiza had a subsistence strategy that was reliant on a significant amount of C4 plants and/or animals fed a C4 diet, likely millet. These results indicate a fairly constant C3 terrestrial‐based diet on the islands of Ibiza and Formentera through time, with a shift to C4 dietary resources during the Islamic Period. Further research is needed from other Islamic populations in and around the Mediterranean to better understand this unique dietary adaptation. Am J Phys Anthropol 143:512–522, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
1. We used stable isotopes to study the temporal (early summer versus autumn) pattern of use of terrestrial and aquatic sources of organic carbon by consumers in two bedrock‐confined reaches of a grassland river in New Zealand.
2. The major sources of organic carbon available to primary consumers were expected to be terrestrial leaf‐litter and biofilm from the stream channel. These putative carbon sources showed no significant change in mean δ13C between summer and autumn. Leaf litter (mean δ13C13C compared to biofilm (mean δ13C>?19.92).
3. In contrast to leaf litter and biofilm, the δ13C of consumers changed over time, being enriched in 13C in the autumn compared with early summer. Both the magnitude (>5‰ in some cases) and rapidity of this shift (< 3 months) was surprising.
4. A two‐source mixing model indicated that, during early summer, terrestrial carbon comprised> 50% of tissue carbon for 15 of the 17 taxa of aquatic consumers analysed. During autumn, terrestrial carbon comprised> 50% of the tissue carbon of only five of 25 taxa. Because the mean δ13C of putative food sources was consistent over time, the shift in δ13C values for consumers is attributed to a change in relative amounts of terrestrial and aquatic carbon available for consumption.
5. Because seston consists of a mixture of many particles of diverse origin, it may provide an integrated measure of catchment‐wide sources of organic matter entering a stream channel. Like the tissues of most consumers, mean δ13C values for seston showed a significant shift toward 13C enrichment. This indicated that the relative availability of terrestrial carbon decreased from summer to autumn.
6. The actual quantity of carbon contributed to the stream food‐web by this potential terrestrial–aquatic link is unknown. Although terrestrial carbon may comprise a high proportion of the tissue carbon of consumers prior to summer, the majority of secondary production (and carbon sequestration) probably occurs during early summer as a consequence of rising temperature and high quality food in the form of biofilm.  相似文献   

18.
A compilation of experimental animal data shows that neither delta13C(collagen) nor delta13C(apatite) nor Delta13C(CO-AP) indicate diagnostic reconstructions of diet, diet energy and diet protein. In contrast, plots of delta13C(collagen) against delta13C(apatite) provide a model of three regression lines (C3, C4, and marine diet protein) where position on each line indicates the energy source (C3, C4, or mixed). Neither body size nor trophic position appears to affect these relationships. Modern free-ranging, terrestrial fauna do not fit the model perhaps because they, unlike the experimental fauna, mainly use fermentation rather than digestion during energy metabolism. Archaeological humans fall as expected based on associated floral and faunal evidence. Foraging people plot at positions expected from associated C3 fauna and plants. Those from Cahokia plot, as expected, from associated deer, nuts, and maize whereas people from nearby smaller sites plot in positions consistent with eating more fish. Agriculturists from Ontario and Grasshopper Pueblo plot consistent with dependence on fish by the former and on turkeys by the latter. In Tierra del Fuego, people from interior regions ate more terrestrial fauna, as suggested by ethnohistoric reports, than did people from the coast. In the Southwestern Cape in South Africa individuals late in the sequence have pure C3 diets whereas ones early in the sequence ate marine protein as suggested by independent archaeological evidence. People on San Nicolas Island depended on C4 plants in contrast to other islands off California's coast. This simple model provides more detailed and precise dietary information than do individual isotopic measures.  相似文献   

19.
Life history strategies and potential marine niche use of Arctic charr Salvelinus alpinus (n = 237, 84–652 mm, total body length, LT) were determined during the ice-free season (2012) at three different watercourses in south-western Greenland. All Arctic charr were collected from freshwater habitats. Based on stable isotopes of δ34S, the Arctic charr were categorized as either marine- or freshwater-dependent feeders. The use of time-integrated trophic tracers (stable isotopes of δ13C, δ15N, δ34S) suggested that several trophic groups of Arctic charr operate alongside within each fjord system. The groups suggested were one group that specialized in the marine habitat, in addition to two freshwater resident morphs (small-sized resident and/or large-growing cannibalistic individuals). Stomach contents consisted entirely of freshwater and terrestrial prey (i.e., insects), indicating that marine-dependent feeders also fed in freshwater habitats after return from their marine migration. Growth and maturity patterns further supported variable life history strategies within each watercourse. The life history strategy patterns and marine trophic niche use were consistent across the watercourses along several hundred kilometres of coastline. This study represents the first ecological baseline for partially anadromous populations of Greenland Arctic charr.  相似文献   

20.
Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐D and Δ15NC‐D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC‐D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Phe equation with the avian‐specific TDFGlu‐Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu‐Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号