首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The negative regulation of vascular patterning is one of the least understood processes in vascular biology. In amniotes, blood vessels develop throughout the embryonic disc, except for a midline region surrounding the notochord. Here we show that the notochord is the primary signaling center for the inhibition of vessel formation along the embryonic midline. Notochord ablation in quail embryos results in vascular plexus formation at midline. Implantation of the notochord into paraxial and lateral mesoderm inhibits vessel formation locally. The notochord-expressed BMP antagonists Chordin and Noggin inhibit endothelial cell migration in vitro, and their ectopic expression in vivo results in a local disruption of vessel formation. Conversely, BMP-4 activates endothelial cell migration in vitro, and its ectopic expression along the notochord induces vascular plexus formation at midline. These data indicate an inhibitory role of the notochord in defining an avascular zone at the embryonic midline, in part via BMP antagonism.  相似文献   

2.
3.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   

4.
Members of the EGF-CFC family of proteins have recently been implicated as essential cofactors for Nodal signaling. Here we report the isolation of chick CFC and describe its expression pattern, which appears to be similar to Cfc1 in mouse. During early gastrulation, chick CFC was asymmetrically expressed on the left side of Hensen's node as well as in the emerging notochord, prechordal plate, and lateral plate mesoderm. Subsequently, its expression became confined to the heart fields, notochord, and posterior mesoderm. Implantation experiments suggest that chick CFC expression in the lateral plate mesoderm is dependent on BMP signaling, while in the midline its expression depends on an Activin-like signal. The asymmetric expression domain within Hensen's node was not affected by application of FGF8, Noggin, or Shh antibody. Implantation of cells expressing human or mouse CFC2, or chick CFC on the right side of Hensen's node randomized heart looping without affecting expression of genes involved in left-right axis formation, including SnR, Nodal, Car, or Pitx2. Application of antisense oligodeoxynucleotides to the midline of Hamburger-Hamilton stage 4-5 embryos also randomized heart looping, but in contrast to the overexpression experiments, antisense oligodeoxynucleotide treatment resulted in bilateral expression of Nodal, Car, Pitx2, and NKX3.2, whereas Lefty1 expression in the midline was transiently lost. Application of the antisense oligodeoxynucleotides to the lateral plate mesoderm abolished Nodal expression. Thus, chick CFC seems to have a dual function in left-right axis formation by maintaining Nodal expression in the lateral plate mesoderm and controlling expression of Lefty1 expression in the midline territory.  相似文献   

5.
Regulation of VEGFR-2 (Quek1) is an important mechanism during blood vessel formation. In the paraxial mesoderm, Quek1 expression is restricted to the lateral portion of the somite and later to sclerotomal cells surrounding the neural tube. By grafting of either intermediate mesoderm or BMP4 beads into the paraxial mesoderm, we show that BMP4 is a positive regulator of VEGFR-2 (Quek1) expression in the quail embryo. Separation of somites from intermediate mesoderm leads to down-regulation of Quek1 expression. The expression of Quek1 in the medial somite half is normally repressed by the notochord and becomes up-regulated and lateromedially expanded after separation of the notochord. Our results show that up-regulation of BMP4 leads to an increase of the number of blood vessels, whereas inhibition of BMP4 by noggin results in a reduction of blood vessels.  相似文献   

6.
Embryonic blood vessels form in a reproducible pattern that interfaces with other embryonic structures and tissues, but the sources and identities of signals that pattern vessels are not well characterized. We hypothesized that the neural tube provides vascular patterning signal(s) that direct formation of the perineural vascular plexus (PNVP) that encompasses the neural tube at mid-gestation. Both surgically placed ectopic neural tubes and ectopic neural tubes engineered genetically were able to recruit a vascular plexus, showing that the neural tube is the source of a vascular patterning signal. In mouse-quail chimeras with the graft separated from the neural tube by a buffer of host cells, graft-derived vascular cells contributed to the PNVP, indicating that the neural tube signal(s) can act at a distance. Murine neural tube vascular endothelial growth factor A (VEGFA) expression was temporally and spatially correlated with PNVP formation, suggesting it is a component of the neural tube signal. A collagen explant model was developed in which presomitic mesoderm explants formed a vascular plexus in the presence of added VEGFA. Co-cultures between presomitic mesoderm and neural tube also supported vascular plexus formation, indicating that the neural tube could replace the requirement for VEGFA. Moreover, a combination of pharmacological and genetic perturbations showed that VEGFA signaling through FLK1 is a required component of the neural tube vascular patterning signal. Thus, the neural tube is the first structure identified as a midline signaling center for embryonic vascular pattern formation in higher vertebrates, and VEGFA is a necessary component of the neural tube vascular patterning signal. These data suggest a model whereby embryonic structures with little or no capacity for angioblast generation act as a nexus for vessel patterning.  相似文献   

7.
8.
Morphogenesis of a vascular network requires dynamic vessel growth and regression. To investigate the cellular mechanism underlying this process, we deleted focal adhesion kinase (FAK), a key signaling mediator, in endothelial cells (ECs) using Tie2-Cre mice. Targeted FAK depletion occurred efficiently early in development, where mutants exhibited a distinctive and irregular vasculature, resulting in hemorrhage and lethality between embryonic day (e) 10.5 and 11.5. Capillaries and intercapillary spaces in yolk sacs were dilated before any other detectable abnormalities at e9.5, and explants demonstrate that the defects resulted from the loss of FAK and not from organ failure. Time-lapse microscopy monitoring EC behavior during vascular formation in explants revealed no apparent decrease in proliferation or migration but revealed increases in cell retraction and death leading to reduced vessel growth and increased vessel regression. Consistent with this phenotype, ECs derived from mutant embryos exhibited aberrant lamellipodial extensions, altered actin cytoskeleton, and nonpolarized cell movement. This study reveals that FAK is crucial for vascular morphogenesis and the regulation of EC survival and morphology.  相似文献   

9.
Blood vessels are mainly composed of intraluminal endothelial cells (ECs) and mural cells adhering to the ECs on their basal side. Immature blood vessels lacking mural cells are leaky; thus, the process of mural cell adhesion to ECs is indispensable for stability of the vessels during physiological angiogenesis. However, in the tumor microenvironment, although some blood vessels are well-matured, the majority is immature. Because mural cell adhesion to ECs also has a marked anti-apoptotic effect, angiogenesis inhibitors that destroy immature blood vessels may not affect mature vessels showing more resistance to apoptosis. Activation of Tie2 receptor tyrosine kinase expressed in ECs mediates pro-angiogenic effects via the induction of EC migration but also facilitates vessel maturation via the promotion of cell adhesion between mural cells and ECs. Therefore, inhibition of Tie2 has the advantage of completely inhibiting angiogenesis. Here, we isolated a novel small molecule Tie2 kinase inhibitor, identified as 2-methoxycinnamaldehyde (2-MCA). We found that 2-MCA inhibits both sprouting angiogenesis and maturation of blood vessels, resulting in inhibition of tumor growth. Our results suggest a potent clinical benefit of disrupting these two using Tie2 inhibitors.  相似文献   

10.
Several genes containing the conserved T-box region in invertebrates and vertebrates have been reported recently. Here, we describe three novel members of the T-box gene family in zebrafish. One of these genes, tbx-c, is studied in detail. It is expressed in the axial mesoderm, notably, in the notochordal precursor cells immediately before formation of the notochord and in the chordoneural hinge of the tail bud, after the notochord is formed. In addition, its expression is detected in the ventral forebrain, sensory neurons, fin buds and excretory system. The expression pattern of tbx-c differs from that of the other two related genes, tbx-a and tbx-b. The developmental role of tbx-c has been analysed by overexpression of the full-length tbx-c mRNA and a truncated form of tbx-c mRNA, which encodes the dominant-negative Tbx-c. Overexpression of tbx-c causes expansion of the midline mesoderm and formation of ectopic midline structures at the expense of lateral mesodermal cells. In dominant-negative experiments, the midline mesoderm is reduced with the expansion of lateral mesoderm to the midline. These results suggest that tbx-c plays a role in formation of the midline mesoderm, particularly, the notochord. Moreover, modulation of tbx-c activity alters the development of primary motor neurons. Results of in vitro analysis in zebrafish animal caps suggest that tbx-c acts downstream of early mesodermal inducers (activin and ntl) and reveal an autoregulatory feedback loop between ntl and tbx-c. These data and analysis of midline (ntl-/- and flh-/-) and lateral mesoderm (spt-/-) mutants suggest that tbx-c may function during formation of the notochord.  相似文献   

11.
Endothelial cell lineages of the heart   总被引:1,自引:0,他引:1  
During early gastrulation, vertebrate embryos begin to produce endothelial cells (ECs) from the mesoderm. ECs first form primitive vascular plexus de novo and later differentiate into arterial, venous, capillary, and lymphatic ECs. In the heart, the five distinct EC types (endocardial, coronary arterial, venous, capillary, and lymphatic) have distinct phenotypes. For example, coronary ECs establish a typical vessel network throughout the myocardium, whereas endocardial ECs form a large epithelial sheet with no angiogenic sprouting into the myocardium. Neither coronary arteries, veins, and capillaries, nor lymphatic vessels fuse with the endocardium or open to the heart chamber. The developmental stage during which the specific phenotype of each cardiac EC type is determined remains unclear. The mechanisms involved in EC commitment and diversity can however be more precisely defined by tracking the migratory patterns and lineage decisions of the precursors of cardiac ECs. Work carried out by the authors is supported in part by the NIH.  相似文献   

12.
The mass of the myocardium and endocardium of the vertebrate heart derive from the heart-forming fields of the lateral plate mesoderm. Further components of the mature heart such as the epicardium, cardiac interstitium and coronary blood vessels originate from a primarily extracardiac progenitor cell population: the proepicardium (PE). The coronary blood vessels are accompanied by lymph vessels, suggesting a common origin of the two vessel types. However, the origin of cardiac lymphatics has not been studied yet. We have grafted PE of HH-stage 17 (day 3) quail embryos hetero- and homotopically into chick embryos, which were re-incubated until day 15. Double staining with the quail endothelial cell (EC) marker QH1 and the lymphendothelial marker Prox1 shows that the PE of avian embryos delivers hemangioblasts but not lymphangioblasts. We have never observed quail ECs in lymphatics of the chick host. However, one exception was a large lymphatic trunk at the base of the chick heart, indicating a lympho-venous anastomosis and a 'homing' mechanism of venous ECs into the lymphatic trunk. Cardiac lymphatics grow from the base toward the apex of the heart. In murine embryos, we observed a basal to apical gradient of scattered Lyve-1+/CD31+/CD45+ cells in the subepicardium at embryonic day 12.5, indicating a contribution of immigrating lymphangioblasts to the cardiac lymphatic system. Our studies show that coronary blood and lymph vessels are derived from different sources, but grow in close association with each other.  相似文献   

13.
Role of endothelial cells in early pancreas and liver development   总被引:12,自引:0,他引:12  
Liver and pancreas initially develop by budding from the embryonic endoderm. The formation of these organs coincides with the appearance of endothelial cells (ECs) adjacent to the endoderm. ECs either develop in situ in organs, or are recruited by organs and are induced to form blood vessels. Recent reports on liver and pancreas have now shown that ECs also induce essential steps in organ formation such as morphogenesis and cell differentiation. This review summarizes reports on EC signaling during organogenesis and cell differentiation.  相似文献   

14.
Signaling dynamics of feather tract formation from the chick somatopleure   总被引:5,自引:0,他引:5  
In the chick, most feathers are restricted to specific areas of the skin, the feather tracts or pterylae, while other areas, such as the apteria, remain bare. In the embryo, the expansion and closure of the somatopleure leads to the juxtaposition of the ventral pteryla, midventral apterium and amnion. The embryonic proximal somatopleural mesoderm is determined to form a feather-forming dermis at 2 days of incubation (E2), while the embryonic distal and the extra-embryonic somatopleure remain open to determination. We found a progressive, lateral expression of Noggin in the embryonic area, and downregulation of Msx1, a BMP4 target gene, with Msx1 expression being ultimately restricted to the most distal embryonic and extra-embryonic somatopleural mesoderm. Msx1 downregulation thus correlates with the formation of the pterylae, and its maintenance to that of the apterium. Suspecting that the inhibition of BMP4 signaling might be linked to the determination of a feather-forming dermis, we grafted Noggin-expressing cells in the distal somatopleure at E2. This elicited the formation of a supplementary pteryla in the midventral apterium. Endogenous Noggin, which is secreted by the intermediate mesoderm at E2, then by the proximal somatopleure at E4, could be sufficient to suppress BMP4 signaling in the proximal somatopleural mesoderm and then in part of the distal somatopleure, thus in turn allowing the formation of the dense dermis of the future pterylae. The same result was obtained with the graft of Shh-producing cells, but Noggin and Shh are both required in order to change the future amnion into a feather-bearing skin. A possible synergistic role of endogenous Shh from the embryonic endoderm remains to be confirmed.  相似文献   

15.
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.  相似文献   

16.
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.  相似文献   

17.
Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC+CD31+CD34+CD14KDRhigh endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR+ mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs.  相似文献   

18.
The development of the anterior foregut of the mammalian embryo involves changes in the behavior of both the epithelial endoderm and the adjacent mesoderm. Morphogenetic processes that occur include the extrusion of midline notochord cells from the epithelial definitive endoderm, the folding of the endoderm into a foregut tube, and the subsequent separation of the foregut tube into trachea and esophagus. Defects in foregut morphogenesis underlie the constellation of human birth defects known as esophageal atresia (EA) and tracheoesophageal fistula (TEF). Here, we review what is known about the cellular events in foregut morphogenesis and the gene mutations associated with EA and TEF in mice and humans. We present new evidence that about 70% of mouse embryos homozygous null for Nog, the gene encoding noggin, a bone morphogenetic protein (Bmp) antagonist, have EA/TEF as well as defects in lung branching. This phenotype appears to correlate with abnormal morphogenesis of the notochord and defects in its separation from the definitive endoderm. The abnormalities in foregut and lung morphogenesis of Nog null mutant can be rescued by reducing the gene dose of Bmp4 by 50%. This suggests that normal foregut morphogenesis requires that the level of Bmp4 activity is carefully controlled by means of antagonists such as noggin. Several mechanisms are suggested for how Bmps normally function, including by regulating the intercellular adhesion and behavior of notochord and foregut endoderm cells. Future research must determine how Noggin/Bmp antagonism fits into the network of other factors known to regulate tracheal and esophagus development, both in mouse or humans.  相似文献   

19.
beta1 integrin (encoded by Itgb1) is established as a regulator of angiogenesis based upon the phenotypes of complete knockouts of beta1 heterodimer partners or ligands and upon antibody inhibition studies in mice. Its direct function in endothelial cells (ECs) in vivo has not been determined because Itgb1(-/-) embryos die before vascular development. Excision of Itgb1 from ECs and a subset of hematopoietic cells, using Tie2-Cre, resulted in abnormal vascular development by embryonic day (e) 8.5 and lethality by e10.5. Tie1-Cre mediated a more restricted excision of Itgb1 from ECs and hematopoietic cells and resulted in embryonic lethal vascular defects by e11.5. Capillaries of the yolk sacs were disorganized, and the endothelium of major blood vessels and of the heart was frequently discontinuous in mutant embryos. We also found similar vascular morphogenesis defects characterized by EC disorganization in embryonic explants and isolated ECs. Itgb1-null ECs were deficient in adhesion and migration in a ligand-specific fashion, with impaired responses to laminin and collagens, but not to fibronectin. Deletion of Itgb1 reduced EC survival, but did not affect proliferation. Our findings demonstrate that beta1 integrin is essential for EC adhesion, migration and survival during angiogenesis, and further validate that therapies targeting beta1 integrins may effectively impair neovascularization.  相似文献   

20.
We previously demonstrated that a member of the Hedgehog gene family, Indian hedgehog (Ihh), is expressed in the visceral endoderm of EC and ES cell embryoid bodies and mouse embryos. Overexpression studies suggested that Ihh was involved in visceral endoderm differentiation. We now provide evidence for a Hh response in the embryoid body core and in the mesothelial layer of the visceral yolk sac. We also demonstrate that treatment of ES embryoid bodies with the Hh antagonists cAMP and forskolin results in downregulation of the Hh response and altered embryoid body differentiation. The outer endoderm layer undergoes a transition to parietal endoderm while formation of an embryonic ectoderm layer surrounding a cavity is inhibited. These treatments also result in a decrease in the expression of markers for the mesoderm derivatives, blood and endothelial cells. We present a model to explain how Ihh and BMP signaling may regulate extraembryonic endoderm and embryonic ectoderm differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号