首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
A refinement of the protonmotive Q cycle mechanism is proposed in which oxidation of ubiquinol is a concerted reaction and occurs by an alternating, half-of-the-sites mechanism. A concerted mechanism of ubiquinol oxidation is inferred from the finding that there is reciprocal control between the high potential and low potential redox components involved in ubiquinol oxidation. The potential of the Rieske iron-sulfur protein controls the rate of reduction of the b cytochromes, and the potential of the b cytochromes controls the rate of reduction of the Rieske protein and cytochrome c(1). A concerted mechanism of ubiquinol oxidation reconciles the findings that the ubiquinol-cytochrome c reductase kinetics of the bc(1) complex include both a pH dependence and a dependence on Rieske iron-sulfur protein midpoint potential.An alternating, half-of-the-sites mechanism for ubiquinol oxidation is inferred from the finding that some inhibitory analogs of ubiquinol that block ubiquinol oxidation by binding to the ubiquinol oxidation site in the bc(1) complex inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex. One molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme, and the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. An alternating, half-of-the-sites mechanism implies that, at least under some conditions, only half of the sites in the dimeric enzyme are reactive at any one time. This provides a raison d'être for the dimeric structure of the enzyme, in that bc(1) activity may be regulated and capable of switching between a half-of-the-sites active and a fully active enzyme.  相似文献   

2.
We have investigated the interaction between monomers of the dimeric yeast cytochrome bc(1) complex by analyzing the pre-steady and steady state activities of the isolated enzyme in the presence of antimycin under conditions that allow the first turnover of ubiquinol oxidation to be observable in cytochrome c(1) reduction. At pH 8.8, where the redox potential of the iron-sulfur protein is approximately 200 mV and in a bc(1) complex with a mutated iron-sulfur protein of equally low redox potential, the amount of cytochrome c(1) reduced by several equivalents of decyl-ubiquinol in the presence of antimycin corresponded to only half of that present in the bc(1) complex. Similar experiments in the presence of several equivalents of cytochrome c also showed only half of the bc(1) complex participating in quinol oxidation. The extent of cytochrome b reduced corresponded to two b(H) hemes undergoing reduction through one center P per dimer, indicating electron transfer between the two cytochrome b subunits. Antimycin stimulated the ubiquinol-cytochrome c reductase activity of the bc(1) complex at low inhibitor/enzyme ratios. This stimulation could only be fitted to a model in which half of the bc(1) dimer is inactive when both center N sites are free, becoming active upon binding of one center N inhibitor molecule per dimer, and there is electron transfer between the cytochrome b subunits of the dimer. These results are consistent with an alternating half-of-the-sites mechanism of ubiquinol oxidation in the bc(1) complex dimer.  相似文献   

3.
The cytochrome bc1 complex is a dimeric enzyme of the inner mitochondrial membrane that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is rereduced at a second center, referred to as center N. To better understand the mechanism of ubiquinol oxidation, we have examined catalytic activities and pre-steady-state reduction kinetics of yeast cytochrome bc1 complexes with mutations in cytochrome b that we expected would affect oxidation of ubiquinol. We mutated two residues thought to be involved in proton conduction linked to ubiquinol oxidation, Tyr132 and Glu272, and two residues proposed to be involved in docking ubiquinol into the center P pocket, Phe129 and Tyr279. Substitution of Phe129 by lysine or arginine yielded a respiration-deficient phenotype and lipid-dependent catalytic activity. Increased bypass reactions were detectable for both variants, with F129K showing the more severe effects. Substitution with lysine leads to a disturbed coordination of a b heme as deduced from changes in the midpoint potential and the EPR signature. Removal of the aromatic side chain in position Tyr279 lowers the catalytic activity accompanied by a low level of bypass reactions. Pre-steady-state kinetics of the enzymes modified at Glu272 and Tyr132 confirmed the importance of their functional groups for electron transfer. Altered center N kinetics and activation of ubiquinol oxidation by binding of cytochrome c in the Y132F and E272D enzymes indicate long range effects of these mutations.  相似文献   

4.
The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as "hubs" in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell's Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron-sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An "activated Q-cycle" is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage.  相似文献   

5.
Famoxadone (FAM) is a newly commercialized antibiotic for use against plant pathogenic fungi. It inhibits mitochondria ubiquinol:cytochrome c oxidoreductase (EC 1.10.2.2, bc(1) complex) function by binding to the proximal niche of the quinol oxidation site on the enzyme. FAM has effects on the enzyme characteristic of both type Ia (E-beta-methoxyacrylates) and type Ic (stigmatellin) inhibitors. Steady-state and tight-binding inhibition kinetics; as well as direct binding measurements with famoxadone (FAM) and methoxyacrylate stilbene (MOAS), indicated that FAM is a non-competitive inhibitor of the enzyme while methoxyacrylate stilbene (MOAS) is better described as a mixed-competitive inhibitor with respect to substrate. Mixed-competitive and non-competitive inhibition kinetics predicts a ternary enzyme-substrate-inhibitor (ESI) intermediate in the reaction sequence. Current views of the Qo domain architecture propose substrate binding niches in both distal and proximal regions of the domain. Since both inhibitors bind within the proximal niche, the formation of an ESI complex implicates substrate binding within the distal niche near the iron-sulfur protein (ISP) and cytochrome c(1) (C1). In the presence of saturating FAM, addition of substrate led to a slow, nearly stoichiometric reduction of C1 that was enzyme dependent, and independent of O(2)(-) production. Similar experiments with saturating MOAS led to a slow, sub-stoichiometric reduction of C1 by substrate. A comparison of the stoichiometries of reduction, and the apparent second order rate constants (K(cat)/K(m)) indicated that saturating MOAS elicits two distinct enzyme-inhibitor (EI) intermediates. One form does not bind substrate, but the other does. In contrast, saturating FAM leads to a predominant EI form capable of binding substrate. We suggest that these differences can be correlated to the respective effects of each inhibitor on the position of the ISP, and the integrity of a distal substrate binding site. The results also indicate that binding of these inhibitory substrate analogues to the proximal niche of the Qo domain significantly increases the DeltaG(double dagger) for reduction of C1.  相似文献   

6.
We have obtained evidence for conformational communication between ubiquinol oxidation (center P) and ubiquinone reduction (center N) sites of the yeast bc1 complex dimer by analyzing antimycin binding and heme bH reduction at center N in the presence of different center P inhibitors. When stigmatellin was occupying center P, concentration-dependent binding of antimycin occurred only to half of the center N sites. The remaining half of the bc1 complex bound antimycin with a slower rate that was independent of inhibitor concentration, indicating that a slow conformational change needed to occur before half of the enzyme could bind antimycin. In contrast, under conditions where the Rieske protein was not fixed proximal to heme bL at center P, all center N sites bound antimycin with fast and concentration-dependent kinetics. Additionally, the extent of fast cytochrome b reduction by menaquinol through center N in the presence of stigmatellin was approximately half of that observed when myxothiazol was bound at center P. The reduction kinetics of the bH heme by decylubiquinol in the presence of stigmatellin or myxothiazol were also consistent with a model in which fixation of the Rieske protein close to heme bL in both monomers allows rapid binding of ligands only to one center N. Decylubiquinol at high concentrations was able to abolish the biphasic binding of antimycin in the presence of stigmatellin but did not slow down antimycin binding rates. These results are discussed in terms of half-of-the-sites activity of the dimeric bc1 complex.  相似文献   

7.
To better understand the mechanism of divergent electron transfer from ubiquinol to the iron-sulfur protein and cytochrome b(L) within the cytochrome bc(1) complex, we have examined the effects of antimycin on the presteady state reduction kinetics of the bc(1) complex in the presence or absence of endogenous ubiquinone. When ubiquinone is present, antimycin slows the rate of cytochrome c(1) reduction by approximately 10-fold but had no effect upon the rate of cytochrome c(1) reduction in bc(1) complex lacking endogenous ubiquinone. In the absence of endogenous ubiquinone cytochrome c(1), reduction was slower than when ubiquinone was present and was similar to that in the presence of ubiquinone plus antimycin. These results indicate that the low potential redox components, cytochrome b(H) and b(L), exert negative control on the rate of reduction of cytochrome c(1) and the Rieske iron-sulfur protein at center P. If electrons cannot equilibrate from cytochrome b(H) and b(L) to ubiquinone, partial reduction of the low potential components slows reduction of the high potential components. We also examined the effects of decreasing the midpoint potential of the iron-sulfur protein on the rates of cytochrome b reduction. As the midpoint potential decreased, there was a parallel decrease in the rate of b reduction, demonstrating that the rate of b reduction is dependent upon the rate of ubiquinol oxidation by the iron-sulfur protein. Together these results indicate that ubiquinol oxidation is a concerted reaction in which both the low potential and high potential redox components control ubiquinol oxidation at center P, consistent with the protonmotive Q cycle mechanism.  相似文献   

8.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc(1) complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc(1) complex are not well understood. Atovaquone, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc(1) complexes as surrogates to model the interaction of atovaquone with the bc(1) complexes of the target pathogens and human host. As a first step to identify new cytochrome bc(1) complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc(1) complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc(1) complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

9.
The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to as center N (Qn site) and center P (Qp site), respectively. Both are located on cytochrome b, a transmembrane protein of the bc1 complex that is encoded on the mitochondrial genome. To better understand the parameters that affect ligand binding at the Qn site, we applied the Qn site inhibitor ilicicolin H to select for mutations conferring resistance in Saccharomyces cerevisiae. The screen resulted in seven different single amino acid substitutions in cytochrome b rendering the yeast resistant to the inhibitor. Six of the seven mutations have not been previously linked to inhibitor resistance. Ubiquinol-cytochrome c reductase activities of mitochondrial membranes isolated from the mutants confirmed that the differences in sensitivity toward ilicicolin H originated in the cytochrome bc1 complex. Comparative in vivo studies using the known Qn site inhibitors antimycin and funiculosin showed little cross-resistance, indicating different modes of binding of these inhibitors at center N of the bc1 complex.  相似文献   

10.
Mutation of a serine that forms a hydrogen bond to the iron-sulfur cluster of the Rieske iron-sulfur protein to a cysteine results in a respiratory-deficient yeast strain due to formation of iron-sulfur protein lacking the iron-sulfur cluster. The Rieske apoprotein lacking the iron-sulfur cluster is inserted into both monomers of the dimeric cytochrome bc(1) complex and processed to mature size, but the protein lacking iron-sulfur cluster is more susceptible to proteolysis. In addition, the protein environment of center P in one half of the dimer is affected by failure to insert the iron-sulfur cluster as indicated by the fact that only one molecule of myxothiazol can be bound to the cytochrome bc(1) dimer. Although the bc(1) complex lacking the Rieske iron-sulfur cluster cannot oxidize ubiquinol through center P, rates of reduction of cytochrome b by menaquinol through center N are normal. However, less cytochrome b is reduced through center N, and only one molecule of antimycin can be bound at center N in the bc(1) dimer lacking iron-sulfur cluster. These results indicate that failure to insert the [2Fe-2S] cluster impairs assembly of the Rieske protein into the bc(1) complex and that this interferes with proper assembly of both center P and center N in one half of the dimeric enzyme.  相似文献   

11.
We have investigated the oxidation of the reduced ubiquinol:cytochrome c reductase (bc1 complex) isolated from beef heart mitochondria. The oxidation of cytochrome c1 by both potassium ferricyanide and cytochrome c in the ascorbate-reduced bc1 complex is not a first-order process. This is taken as evidence that cytochrome c1 is in rapid equilibrium with the Rieske iron-sulphur center. Among the several inhibitors tested, only 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole and stigmatellin are seen to affect this redox equilibrium between the high-potential centers of the beef heart bc1 complex. The oxidation of cytochrome b by cytochrome c in both the succinate-reduced and the fully reduced bc1 complex is blocked by all the inhibitors tested. This inhibition occurs simultaneously with an acceleration in the oxidation of cytochrome c1, even after extraction of the endogenous ubiquinone which is present in the bc1 preparation. Almost complete extraction of ubiquinone from the bc1 complex has no effect upon the rapid phase of cytochrome b oxidation, nor does it alter the inhibition of cytochrome b oxidation by the various inhibitors. The oxidation of cytochrome b by exogenous ubiquinones is stimulated by myxothiazol and partially inhibited by antimycin. However, the addition of both these inhibitors together completely blocks the oxidation of cytochrome b by quinones. In contrast, the simultaneous addition of antimycin and myxothiazol has no such synergistic effect upon the oxidation of cytochrome b by cytochrome c. Our data show that intramolecular electron transfer from cytochrome(s) b to the Rieske iron-sulphur center can take place in the bc1 complex without involvement of endogenous ubiquinone-10. This electron pathway is sensitive to all the inhibitors of the enzyme.  相似文献   

12.
The steady-state kinetics of ubiquinol: cytochrome c reductase (cytochrome bc1 complex) is analyzed in this work. The graphical pattern of the titrations is clearly indicative of a ping-pong mechanism, but the two products ubiquinone and reduced cytochrome c behave competitively with their substrate and noncompetitively with the other substrate. Hence, the mechanism of the reductase is of a ping-pong two-site type. A minimal reaction scheme for the enzymatic mechanism is proposed and approximate values of its rate constants are deduced on the assumption that each substrate is in rapid equilibrium at its catalytic site. This has been substantiated by presteady-state measurements of the reduction and oxidation of cytochrome b by a short-chain homolog of ubiquinol. Values of the rate constants of the reaction scheme have been deduced from the steady-state titrations for a series of 2,3-dimethoxy-5-methyl quinols having different hydrophobic substituents in position 6 of the ring. The results provide a quantitative estimation of the specificity of the quinol catalytic site in the transmembrane portion of the bc1 complex. In particular, a reasonable correlation is found between the rate of the second-order reaction of quinols with the enzyme and their solubility in lipids.  相似文献   

13.
Ilicicolin H is an antibiotic isolated from the "imperfect" fungus Cylindrocladium iliciola strain MFC-870. Ilicicolin inhibits mitochondrial respiration by inhibiting the cytochrome bc(1) complex. In order to identify the site of ilicicolin action within the bc(1) complex we have characterized the effects of ilicicolin on the cytochrome bc(1) complex of Saccharomyces cerevisiae. Ilicicolin inhibits ubiquinol-cytochrome c reductase activity of the yeast bc(1) complex with an IC(50) of 3-5 nM, while 200-250 nM ilicicolin was required to obtain comparable inhibition of the bovine bc(1) complex. Ilicicolin blocks oxidation-reduction of cytochrome b through center N of the bc(1) complex and promotes oxidant-induced reduction of cytochrome b but has no effect on oxidation of ubiquinol through center P. These results indicate that ilicicolin binds to the Qn site of the bc(1) complex. Ilicicolin induces a blue shift in the absorption spectrum of ferro-cytochrome b, and titration of the spectral shift indicates binding of one inhibitor molecule per Qn site. The effects of ilicicolin on electron transfer reactions in the bc(1) complex are similar to those of antimycin, another inhibitor that binds to the Qn site of the bc(1) complex. However, because the two inhibitors have different effects on the absorption spectrum of cytochrome b, they differ in their mode of binding to the Qn site.  相似文献   

14.
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.  相似文献   

15.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

16.
The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

17.
We have investigated the mechanism responsible for half-of-the-sites activity in the dimeric cytochrome bc(1) complex from Paracoccus denitrificans by characterizing the kinetics of inhibitor binding to the ubiquinol oxidation site at center P. Both myxothiazol and stigmatellin induced a 2-3 nm shift of the visible absorbance spectrum of the b(L) heme. The shift generated by myxothiazol was symmetric, with monophasic kinetics that indicate equal binding of this inhibitor to both center P sites. In contrast, stigmatellin generated an asymmetric shift in the b(L) spectrum, with biphasic kinetics in which each phase contributed approximately half of the total magnitude of the spectral change. The faster binding phase corresponded to a more symmetrical shift of the b(L) spectrum relative to the slower binding phase, indicating that approximately half of the center P sites bound stigmatellin more slowly and in a different position relative to the b(L) heme, generating a different effect on its electronic environment. Significantly, the slow stigmatellin binding phase was lost as the inhibitor concentration was increased. This implies that a conformational change is transmitted from one center P site in the dimer to the other upon stigmatellin binding to one monomer, rendering the second site less accessible to the inhibitor. Because the position that stigmatellin occupies at center P is considered to be analogous to that of the quinol substrate at the moment of electron transfer, these results indicate that the productive enzyme-substrate configuration is prevented from occurring in both monomers simultaneously.  相似文献   

18.
Dimeric ubiquinol:cytochrome c reductase of Neurospora mitochondria was isolated as a protein-Triton complex and free of ubiquinol (Q). The enzyme was incorporated into phosphatidylcholine membranes together with Q. The effects of varying the molar ratio of Q to enzyme on the electron transfer from duroquinol (DHQ2) to the cytochromes c, c1 and b were studied. The rate of electron flow from DQH2 to cytochrome c was 15 times increased by Q and was maximal when one molecule of Q was bound to one enzyme dimer. The apparent Km value for DQH2 of the Q-free enzyme was 5 microM and of the Q-supplemented enzyme 25 microM. The pre-steady-state rate of electron transfer from DQH2 to cytochrome c1 was also 15 times increased by Q and was maximal with one Q molecule bound to one enzyme dimer. This effect of Q was inhibited by antimycin. The pre-steady-state rate of electron transfer from DQH2 to cytochrome b was 5 times decreased when Q was bound to the enzyme and this effect of Q was insensitive to myxothiazol. The H+/2e- stoichiometry with DQH2 as substrate of the Q-supplemented enzyme was 3.6. These results are interpreted in accordance with a Q-cycle mechanism operating in a dimeric cytochrome reductase. Each enzyme monomer catalyses a single electron transfer from the QH2-oxidation centre to the Q-reduction centre and the two monomers cooperate in the reduction of Q to QH2 at one Q-reduction centre. This centre contains two different binding sites for Q. DQH2 does not properly react at the QH2-oxidation centre. DQH2, however, binds to the loose Q-binding site of the Q-reduction centre and reduces the Q bound to the tight Q-binding site of the centre. The QH2 thus formed at the Q-reduction centre serves as electron donor for the QH2-oxidation centre.  相似文献   

19.
Deletion of QCR9, the nuclear gene encoding subunit 9 of the mitochondrial cytochrome bc1 complex in Saccharomyces cerevisiae, results in inactivation of the bc1 complex and inability of the yeast to grow on non-fermentable carbon sources. The loss of bc1 complex activity is due to loss of electron transfer activity at the ubiquinol oxidase site (center P) in the complex. Electron transfer at the ubiquinone reductase site (center N), is unaffected by the loss of subunit 9, but the extent of cytochrome b reduction is diminished. This is the first instance in which a supernumerary polypeptide, lacking a redox prosthetic group, has been shown to be required for an electron transfer reaction within the cytochrome bc1 complex.  相似文献   

20.
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake. 2. The rapid proton uptake associated to oxidation and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e- ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 4. Intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号