首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Beech forests naturally regenerating from clear-cutting can exhibit different microclimates depending on size of saplings and stem density. When beech trees are young and stem density is low, the level of radiation inside the ecosystem reaching the soil surface is high; consequently, air and soil temperatures rise and the soil water content may decrease. These microclimatic parameters presumably will affect the anatomy, photosynthesis, and carbon metabolism of beech leaves. We studied the morphology and physiology of sun and shade leaves of beech trees differing in age and growing within clear-cut areas with distinct microclimate. Results were compared with those of adult trees in an unmanaged forest. We selected a stand clear-cut in 2001 (14,000 trees ha−1), another clear-cut in 1996 (44,000 trees ha−1) and an unmanaged forest (1,000 trees ha−1). Photosynthetic photon flux density (PPFD) incident on sun leaves, air temperature, soil moisture, and soil temperature within the forests affected water status and carbohydrate storage in all trees. As trees became older, PPFD also influenced pigment composition and Rubisco activity in sun leaves. On the other hand, shade leaves from the oldest trees were the most sensitive to PPFD, air temperature, and soil moisture and temperature inside the forest. Contrariwise, microclimatic parameters slightly affected the physiology of shade leaves of the beech in the stand with the highest light attenuation. Air and soil temperatures were the parameters that most affected the photosynthetic pigments and carbohydrate storage in shade leaves of the youngest trees.  相似文献   

2.
The effect of canopy trees on understory seedling and sapling distribution is examined in near-climax hemlock-northern hardwood forests in order to predict tree replacement patterns and assess compositional stability. Canopy trees and saplings were mapped in 65 0.1-ha plots in 16 tracts of old-growth forests dominated by Tsuga canadensis, Acer saccharum, Fagus grandifolia, Tilia americana, and Betula lutea in the northeastern United States. Seedlings were tallied in sub-plots. Canopy influence on individual saplings and sub-plots was calculated, using several indices for canopy species individually and in total. For each species sapling and seedling distributions were compared to those distributions expected if saplings were located independently of canopy influence. Non-random distributions indicated that sapling and seedling establishment or mortality were related to the species of nearby canopy trees. Hemlock canopy trees discriminate against beech and maple saplings while sugar maple canopy favors beech saplings relative to other species. Basswood canopy discourages growth of saplings of other species, but produces basal sprouts. Yellow birch saplings were rarely seen beneath intact canopy. Since trees in these forests are usually replaced by suppressed seedlings or saplings, canopy-understory interactions should influence replacement probabilities and, ultimately, stand composition. I suggest that hemlock and basswood tend to be self-replacing, maple and beech tend to replace each other, and birch survives as a fugitive by occupying occasional suitable gaps. This suggests that these species may co-exist within stands for long periods with little likelihood of successional elimination of any species. There is some suggestion of geographical variation in these patterns.  相似文献   

3.
R. Leemans 《Plant Ecology》1991,93(2):157-165
The spatial pattern of seedlings, saplings and canopy trees was studied in two spruce (Picea abies (L.) Karst.) forests in central Sweden. Canopy and forest structure were determined in five 0.25 ha plots. Life stage classes were distinguished on the basis of age and size distributions. Ripley's K-function (1977) was used to analyze the spatial patterns within each class. A random distribution of seedlings gave way to a more aggregated pattern on a small scale during the establishment phase. Saplings and sub-canopy trees were strongly aggregated and canopy trees were again randomly distributed within the plots. The proportion of individuals growing in gaps was used as an index of association between the spatial pattern in saplings and sub-canopy trees and the occurrence of small (50–350 m2) canopy gaps. Under the null hypothesis of independence the expected value of this statistic would equal the canopy gap ratio for the stand. Monte Carlo simulation of this statistic, using fixed sapling positions and randomly repositioned canopy gaps, confirmed the importance of canopy gaps for the final success of establishment of spruce. The association of understorey trees with gaps suggest that small gaps are typically closed by recruitment of new saplings from a sapling bank rather than by the release of larger suppressed trees.  相似文献   

4.
Ethiopian Afromontane moist forests where coffee grows as understorey shrub are traditionally managed by the local communities for coffee production through thinning of the shade tree canopy and slashing of competing undergrowth. This management practice has a negative impact on the coffee shrubs, because the removal of shade tree saplings and seedlings reduces the succession potential of the shade tree canopy, which threatens the very existence of the shade coffee production system. We assessed the functionality of small exclosures to initiate coffee shade tree canopy restoration through natural regeneration. Our results show that small exclosures have a strong restoration potential for the coffee shade trees preferred by farmers (Albizia schimperiana, A. gummifera and Millettia ferruginea), as evidenced from their seedling abundance, survival and growth. The regeneration of late‐successional tree species of the moist Afromontane forest was not successful in the small exclosures, most probably due to the low abundance or absence of adult trees as seed sources for regeneration. Therefore, temporary establishment of small exclosures in degraded coffee forest fragments where shade trees are getting old or dying is recommended for sustainable shade coffee production.  相似文献   

5.
Morphological plasticity was studied for advanced regeneration trees in different light environments of the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were very shade tolerant silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.), and midtolerant Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected for measurements in different stands from two different geographical locations. Various morphological traits (specific leaf area, live crown ratio, crown width to length ratio, terminal to lateral ratio, number of internodal shoots, number of shoots in terminal whorl, stem symmetry, stem orientation, stem forking) for each regenerating tree were measured during summers of 2001 and 2002. Percentage of above canopy light and stand basal area measures were used to assess the available growing space for each seedling/sapling. Regression relationships were developed for the different morphological indicators as a function of these two variables. All species adapted their morphology along the gradient in light and basal area. Spruce seemed to be less adapted to low light conditions than both fir and beech. However, no significant differences in terms of shade tolerance were detected using the above indicators. In really dense stand conditions (less than 20% above canopy light and stand basal area above 36 m2 ha−1), probability for stem forking in beech increased. In open, all three species adapted their morphology for vigorous growth. Under such conditions, spruce was better adapted than fir.  相似文献   

6.
The decomposition and the fate of 15N- labelled beech litter was monitored in a beech forest (Vosges mountains, France) over 3 years. Circular plots around beech trees were isolated from neighbouring tree roots by soil trenching. After removal of the litter layer, 15N-labelled litter was distributed on the soil. Samples [labelled litter, soil (0–15 cm depths], fine roots, mycorrhizal root tips, leaves) were collected during the subsequent vegetation periods and analysed for total N and 15N concentration. Mass loss of the 15N-labelled litter was estimated using mass loss data from a litterbag experiment set up at the field site. An initial and rapid release of soluble N from the decomposing litter was balanced by the incorporation of exogenous N into the litter. Fungal N accounted for approximately 35% of the N incorporation. Over 2 years, litter N was continuously released and rates of N and mass loss were equivalent, while litter N was preferentially lost during the 3rd year. Released 15N accumulated essentially at the soil surface. 15N from the decomposing litter was rapidly (i.e. in 6 months) detected in roots and beech leaves and its level increased regularly and linearly over the course of the labelling experiment. After 3 years, about 2% of the original litter N had accumulated in the trees. 15N budgets indicated that soluble N was the main source for soil microbial biomass. Nitrogen accumulated in storage compounds was the main source of leaf N, while soil organic N was the main source of mycorrhizal N. Use of 15N-labelled beech litter as decomposing substrate allowed assessment of the fate of litter N in the soil and tree N pools in a beech forest on different time scales. Received: 3 May 1999 / Accepted: 3 January 2000  相似文献   

7.
Being able to persist in deep shade is an important characteristic of juvenile trees, often leading to a strong dominance of shade‐tolerant species in forests with low canopy turnover and a low disturbance rate. While leaf, growth, and storage traits are known to be key components of shade tolerance, their interplay during regeneration development and their influence on juveniles'' survival time remains unclear. We assessed the ontogenetic effects of these three traits on the survival time of beech (Fagus sylvatica), and Norway and sycamore maples (Acer pseudoplatanus, Acer platanoides) in a primeval beech forest. Biomass allocation, age, and content of nonstructural carbohydrates (NSC) were measured in the stems and roots of 289 seedlings and saplings in high‐ and low‐vitality classes. Saplings experienced a trade‐off between absolute growth rate (AGR) and storage (NSC) as the leaf area ratio (LAR) decreases with biomass development. High LAR but low AGR and low NSC corresponded to beech with a marked ability to persist in deep shade while awaiting canopy release. In turn, a comparably small LAR in combination with a high AGR and higher storage (NSC), as observed in Norway maple and sycamore maple, reduced sapling survival time, thus offering an explanation for beech dominance and maple disappearance in the undergrowth of old‐growth beech forests.  相似文献   

8.
《Acta Oecologica》2006,29(1):78-84
The aim of the present work was to analyse the relationship of seedlings and saplings of Taxus baccata to the photosynthetic photon flux density (PPFD) reaching the forest floor under natural conditions. Two permanent plots, subdivided into 1 × 1 m square plots, were established in a naturally regenerating population of T. baccata formed during last decades in the Kórnik Arboretum, Poland. All seedlings in every 1 × 1 m plots were counted. Relative PPFD was measured for every plot at the canopy height of the yew seedlings. The dependence of seedling density upon PPFD was examined. We found, that the frequency of the smallest seedlings (to 6.0 cm tall) was highest in the most shaded plots and decreased in plots with increasing PPFD. Thus, the youngest yew seedlings can germinate and grow in very shady conditions. However, the older seedlings (6.1–25.0 and 25.1–100.0 classes) were observed most frequently in 2–7% PPFD. The small numbers of older, taller seedlings in deep shade likely indicate a higher mortality rate of seedlings less than 6 cm in height without promotion to the next height class. Probably the low value of PPFD under the canopy of the stand significantly reduces the competition of other plants with the youngest yew seedlings. At higher light levels they may not be able to compete with more light-demanding plants, such as herbs and seedlings of broad-leaved trees. The seedlings of the second (6.1–25.0 cm) and third (25.1–100.0 cm) height classes were observed most frequently in the plots with 2–7% PPFD (Fig. 1b and c).  相似文献   

9.
Summary Primordia from buds of sun and shade twigs of European beech (Fagus sylvatica L.) were collected six times a year for anatomical investigations. Differentiation into sun-leaf and shade-leaf primordia was first observed in early August. Sun-leaf primordia had five, and shade-leaf primordia four layers of mesophyll meristem cells. With potted graft unions of beeches possible structural changes of leaf primordia were investigated. Trees adapted to shade develop sun-leaf primordia when put into full daylight, provided the transfer happened before July. Trees adapted to full daylight developed leaf primordia which remained structurally sun-leaf primordia when the plant was kept under shade conditions. Shadeleaf branches of young beech trees cut in February in order to expose the shade buds to full daylight developed either shade leaves or intermediate shade/sun leaves. These experiments show that the subtending leaf may provide the developing axillary bud with photoassimilates, but its character, whether sun or shade leaf, has no influence on the character of the developing leaf primordia.  相似文献   

10.
This study assessed the variation of leaf anatomy, chlorophyll content index (CCI), maximal stomatal conductance (g s max ) and leaf wettability within the canopy of an adult European beech tree (Fagus sylvatica L.) and for beech saplings placed along the vertical gradient in the canopy. At the top canopy level (CL28m) of the adult beech, CCI and leaf anatomy reflected higher light stress, while g s max increased with height, reflecting the importance of gas exchange in the upper canopy layer. Leaf wettability, measured as drop contact angle, decreased from 85.5°?±?1.6° (summer) to 57.5°?±?2.8° (autumn) at CL28m of the adult tree. At CL22m, adult beech leaves seemed to be better optimized for photosynthesis than the CL28m leaves because of a large leaf thickness with less protective and impregnated substances, and a higher CCI. The beech saplings, in contrast, did not adapt their stomatal characteristics and leaf anatomy according to the same strategy as the adult beech leaves. Consequently, care is needed when scaling up experimental results from seedlings to adult trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号