首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Göhre V  Paszkowski U 《Planta》2006,223(6):1115-1122
High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metals.  相似文献   

2.
重金属污染土壤修复技术研究的现状与展望   总被引:149,自引:4,他引:149  
目前重金属污染土壤的修复主要采用物理化学技术和植物修复技术,根据其作用和过程和机物,物理化学技术主要包括化学固化,土壤淋洗和动电修复;植物修复技术包括植物稳定,植物挥发和植物提取,本文就各种修复技术的原理,优缺点,实用性及其国际研究与发展动态作一简述。  相似文献   

3.
玉米在重金属污染条件下的生态分化与品种退化   总被引:12,自引:1,他引:12  
通过易地栽种实验,研究了经历不同重金属污染时期的玉米种群在正常条件下的平均相对生长率、不同时间的开花百分率及其整株重、株高、穗重、50 粒种子重、有效穗长和无效穗长等数量性状在不同玉米种群间的差异.结果表明,经历较长时期重金属污染适应的玉米种群在正常条件下栽种,具有较低的平均相对生长率,生活史缩短,植株矮化,产量降低.可以看出,玉米对重金属污染的适应导致了生态分化和品种退化,并讨论了玉米对重金属污染适应的耐性代价.  相似文献   

4.
5.
The agricultural soils near a copper smelter in southeast China were found to be highly contaminated with Cu, Pb, Zn, and Cd. Metal migration from the soil to groundwater presents an environmental risk that depends on the physicochemical properties of the contaminated soils. Soil solution samples were obtained using lysimeters from a loam soil with multiple metal pollutions over a period of about 1 yr. A field lysimeter study was also conducted to examine the potential use of (S, S')-ethylenediamine-N, N'-disuccinic acid trisodium salt (EDDSNa3) in chelate-enhanced phytoremedation and to evaluate the leaching of heavy metals. The average heavy metal concentrations in the soil solution (without the addition of EDDS) were high (e.g., 0.15 mg Pb L(-1) at a 50-cm depth) compared to the upper limit for protection of groundwater in China, but varied during the sampling period. Cu concentrations were not correlated with pH or dissolved organic carbon (DOC), but Zn and Cd concentrations were related to soil solution pH. EDDS enhanced metal solubility in the soil, but plant metal uptake by Elsholtzia splendens Nakai did not increase accordingly. There may be an increasing risk of groundwater pollution by Cu and the EDDS enhanced phytoremediation technique needs to be carefully applied to minimize this side effect.  相似文献   

6.
The effect of long-term mercury pollution on the soil microbial community   总被引:1,自引:0,他引:1  
The effect of long-term exposure to mercury on the soil microbial community was investigated in soil from three different sites along a pollution gradient. The amount of total and bioavailable mercury was negatively correlated to the distance from the center of contamination. The size of the bacterial and protozoan populations was reduced in the most contaminated soil, whereas there was no significant difference in fungal biomass measured as chitinase activity. Based on the number of colony morphotypes, moreover, the culturable bacterial population was structurally less diverse and contained a higher proportion of resistant and fast-growing forms. The profiles of amplified 16S rDNA sequences obtained from community DNA by denaturating gradient gel electrophoresis (DGGE) also reflected the altered community structure and decreased diversity along the mercury gradient as expressed in terms of the number and abundance of bands. The functional potential of the microbial population measured as sole carbon source utilization by Ecoplates((R)) differed between the soils, but there was no change in the number of substrates utilized. The observed changes in the different soil microbial populations are probably a combination of both direct and indirect effects of the mercury contamination.  相似文献   

7.
Thlaspi caerulescens is distributed in Europe on metalliferous and not metalliferous soils. Individuals from populations growing on heavy metal contaminated soils are well known as hyperaccumulators of zinc and cadmium. The taxonomical treatment of subspecies of Thlaspi caerulescens is unsettled. We investigated the degree of genetic variation among 28 populations of Thlaspi caerulescens from Europe with isozyme analysis to compare inter- and intrapopulational diversity. British material from heavy metal contaminated environments recognized as Thlaspi sylvestre and T. occitanicum are quite similar to each other on the level of isozyme polymophisms, but they are more closely related to populations from non-contaminated stands from Scandinavia and Middle Europe than to metallophytes distributed in Continental Europe. Our findings indicate that a taxonomical subdivision of T. caerulescens is not possible and, furthermore, heavy metal tolerance might have evolved twice in populations of Thlaspi caerulescens from different areas. The trait of zinc tolerance and hyperaccumulation is frequently found in numerous relatives of Thlaspi caerulescens, and it is suggested that this trait has been established and manifested in populations from metalliferous sites during postglacial colonization. From Scandinavia only non-metallophytes are known. These populations are very similar to each other on the isozyme level. This fits to the hypothesis that Thlaspi caerulescens was introduced to Scandinavia in recent times by human activity. Despite full self-compatibility we estimated varying outcrossing rates up to 0.88 in the metallophytes and 0.658 in the non-metallophytes depending on population size and structure.  相似文献   

8.
The impact of long-term heavy metal contamination on soil communities was assessed by a number of methods. These included plate counts of culturable bacteria, community level physiological profiling (CLPP) by analysis of the utilization of multiple carbon sources in BIOLOG plates, community fatty acid methyl ester (C-FAME) profiling and dehydrogenase enzyme activity measurements. These approaches were complemented with microscopic assessments of the diversity of the nematode community. Samples from two sites with different histories of heavy-metal input were assessed. Major differences in microbial and meiofaunal parameters were observed both between and within the sites. There was a large degree of congruence between each of the microbiological approaches. In particular, one sample appeared to be distinguished by a reduction in culturable bacteria (especially pseudomonads), limited response to carbon sources in CLPP, and major differences in extracted fatty acid profiles. The use of multivariate analysis to examine the relationship between microbial and physicochemical measurements revealed that CLPP and plate counts were useful for determining the gross effect of metals on soil microbial communities, whereas proportions of metal-resistant bacteria and dehydrogenase activity differentiated between the two sites. Copper and zinc concentrations and pH all showed significant correlation with the microbial parameters. Nematode community structure was affected to a greater extent by soil pH than by metal content, but the within-site rankings were the same as those achieved for microbiological analyses. The use of these methods for field evaluation of the impact of industrial pollution may be possible provided care is taken when interpreting the data.  相似文献   

9.
Filtrates from the bacterium Shewanella sp. IRI-160 (termed IRI-160AA) have been shown to inhibit population growth and kill a variety of dinoflagellates grown in culture. Here we test the immediate efficacy of IRI-160AA in laboratory microcosms initiated from three natural dinoflagellate blooms (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum). We measured target dinoflagellate abundance, total chlorophyll-a, photosystem II (PSII) photochemistry, and changes to the prokaryotic and eukaryotic community composition over 2–3 days of IRI-160AA incubation. Naked dinoflagellates were impacted more, while abundance of the thecate P. minimum was not affected. However, dinoflagellate growth inhibition was generally lower than that observed in uni-algal cultures, and took longer to occur. Eukaryotic community composition in IRI-160AA treated microcosms was significantly different from control incubations, and was driven predominantly by increases in heterotrophic protists (e.g. Euplotes sp. and Paraphysomonas sp.). Similarly, significant changes to the prokaryotic community structure were evident. Microcosms of G. instriatum with higher algicide concentrations indicated that algicidal activity was enhanced in a dose dependent manner. Furthermore, total ciliate abundance as well as a bactivorous chyrsophyte (Paraphysomonas sp.) increased in a dose dependent manner. Total diatom abundance increased at lower IRI-160AA concentrations, but increased less with increasing dose. Overall, the bio-activity of IRI-160AA on naturally occurring dinoflagellates in mixed natural microbial communities is encouraging from the applied perspective of using the active compound(s) in IRI-160AA as natural agent(s) to manage harmful dinoflagellate blooms.  相似文献   

10.
重金属污染土壤植物修复的研究进展和应用前景   总被引:14,自引:0,他引:14  
土壤污染是当今面临的一个严峻的问题。其中重金属污染尤为严重。因此重金属污染土壤的修复日益受到各国政府和学者的重视。植物修复技术作为一种绿色安全的技术以其潜在的高效、经济及生态协调性成为当前国际学术界研究的热点领域。就植物修复技术的概念、方法原理、植物修复技术的研究历史和现状以及优点、应用前景作了系统阐述,并介绍了国内外开展的一些应用性实例。指出了植物修复技术当前还存在的问题。对今后发展的方向。作出了几点展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号