首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 285 毫秒
1.
Graham R. Martin  Sarah Wanless 《Ibis》2015,157(4):798-807
Significant differences in avian visual fields are found between closely related species that differ in their foraging technique. We report marked differences in the visual fields of two auk species. In air, Common Guillemots Uria aalge have relatively narrow binocular fields typical of those found in non‐passerine predatory birds. Atlantic Puffins Fratercula arctica have much broader binocular fields similar to those that have hitherto been recorded in passerines and in a penguin. In water, visual fields narrow considerably and binocularity in the direction of the bill is probably abolished in both auk species. Although perceptual challenges associated with foraging are similar in both species during the breeding season, when they are piscivorous, Puffins (but not Guillemots) face more exacting perceptual challenges when foraging at other times, when they take a high proportion of small invertebrate prey. Capturing this prey probably requires more accurate, visually guided bill placement and we argue that this is met by the Puffin's broader binocular field, which is retained upon immersion; its upward orientation may enable prey to be seen in silhouette. These visual field configurations have potentially important consequences that render these birds vulnerable to collision with human artefacts underwater, but not in air. They also have consequences for vigilance behaviour.  相似文献   

2.
Compound eyes and hunting behaviour of three species of the genus Asaphidion de Gozis 1886 (Coleoptera, Carabidae) have been investigated. All three have a fovea and binocular overlap in their frontal fields of vision. In the smallest species A. flavipes, the binocular overlap is largest and the foveal interommatidial angles are narrowest. All three species hunt by visual cues; A. flavipes is the most precise during the approach to the prey and during the attack. The mean size of its approach jerks and its critical distance prior to the attack are shorter than those of A. caraboides, and the scatter of these distances is much smaller. This leads to greater success in capturing fast fleeing prey (Collembola) on the soil surface.  相似文献   

3.
Predatory diving birds, such as cormorants (Phalacrocoracidae), have been generally regarded as visually guided pursuit foragers. However, due to their poor visual resolution underwater, it has recently been hypothesized that Great Cormorants do not in fact employ a pursuit-dive foraging technique. They appear capable of detecting typical prey only at short distances, and primarily use a foraging technique in which prey may be detected only at close quarters or flushed from a substratum or hiding place. In birds, visual field parameters, such as the position and extent of the region of binocular vision, and how these are altered by eye movements, appear to be determined primarily by feeding ecology. Therefore, to understand further the feeding technique of Great Cormorants we have determined retinal visual fields and eye movement amplitudes using an ophthalmoscopic reflex technique. We show that visual fields and eye movements in cormorants exhibit close similarity with those of other birds, such as herons (Ardeidae) and hornbills (Bucerotidae), which forage terrestrially typically using a close-quarter prey detection or flushing technique and/or which need to examine items held in the bill before ingestion. We argue that this visual field topography and associated eye movements is a general characteristic of birds whose foraging requires the detection of nearby mobile prey items from within a wide arc around the head, accurate capture of that prey using the bill, and visual examination of the caught prey held in the bill. This supports the idea that cormorants, although visually guided predators, are not primarily pursuit predators, and that their visual fields exhibit convergence towards a set of characteristics that meet the perceptual challenges of close-quarter prey detection or flush foraging in both aquatic and terrestrial environments.  相似文献   

4.
The visual fields of Blacksmith Lapwings Vanellus armatus show the characteristics of visual guided foragers that use precision pecking for prey capture – a binocular field of narrow width and limited vertical extent, with the projection of the bill close to its centre and a large blind area above and behind the head. The topography of the total field, particularly the binocular field, is similar to that of European Golden Plovers Pluvialis apricaria. We suggest that the ‘foot‐trembling’ behaviour associated with foraging in Plovers is not under visual guidance but forces the escape of hidden prey, which is detected when the prey item moves into the binocular field to enable its capture in the bill. Foot‐trembling thus functions to extend the effective foraging area of a bird beyond the limits of its visual field.  相似文献   

5.

Background

Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families.

Methodology/Principal Findings

We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper''s Hawks'' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper''s Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack.

Conclusions

We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.  相似文献   

6.
Little is known as to how visual systems and visual behaviors vary within guilds in which species share the same micro-habitat types but use different foraging tactics. We studied different dimensions of the visual system and scanning behavior of Carolina chickadees, tufted titmice, and white-breasted nuthatches, which are tree foragers that form heterospecific flocks during the winter. All species had centro-temporally located foveae that project into the frontal part of the lateral visual field. Visual acuity was the highest in nuthatches, intermediate in titmice, and the lowest in chickadees. Chickadees and titmice had relatively wide binocular fields with a high degree of eye movement right above their short bills probably to converge their eyes while searching for food. Nuthatches had narrower binocular fields with a high degree of eye movement below their bills probably to orient the fovea toward the trunk while searching for food. Chickadees and titmice had higher scanning (e.g., head movement) rates than nuthatches probably due to their wider blind areas that limit visual coverage. The visual systems of these three species seem tuned to the visual challenges posed by the different foraging and scanning strategies that facilitate the partitioning of resources within this guild.  相似文献   

7.
Variations in visual field topography among birds have been interpreted as adaptations to the specific perceptual challenges posed by the species’ foraging ecology. To test this hypothesis we determined visual field topography in four bird species which have different foraging ecologies but are from the same family: Puna Ibis Plegadis ridgwayi (probes for prey in the soft substrates of marsh habitats), Northern Bald Ibis Geronticus eremita (surface pecks for prey in dry terrestrial habitats), African Spoonbill Platalea alba and Eurasian Spoonbill Platalea leucorodia (bill‐sweeps for prey in shallow turbid waters). All four species employ tactile cues provided by bill‐tip organs for prey detection. We predicted that the visual fields of these species would show general features similar to those found in other birds whose foraging is guided by tactile cues from the bill (i.e. bill falling outside the frontal binocular field and comprehensive visual coverage of the celestial hemisphere). However, the visual fields of all four species showed general features characteristic of birds that take food directly in the bill under visual guidance (i.e. a narrow and vertically long binocular field in which the projection of the bill tip is approximately central and with a blind area above and behind the head). Visual fields of the two spoonbills were very similar but differed from those of the ibises, which also differed between themselves. In the spoonbills, there was a blind area below the bill produced by the enlarged spatulate bill tip. We discuss how these differences in visual fields are related to the perceptual challenges of these birds’ different foraging ecologies, including the detection, identification and ingestion of prey. In particular we suggest that all species need to see binocularly around the bill and between the opened mandibles for the identification of caught prey items and its transport to the back of the mouth. Our findings support the hypothesis that sensory challenges associated with differences in foraging ecology, rather than shared ancestry or the control of locomotion, are the main determinants of variation in visual field topography in birds.  相似文献   

8.
Many planktivorous fishes forage in currents, where they actively maintain position and visually strike at current-entrained zooplankton. In general, the zooplankton are wafted by the foraging fish at a rate equivalent to the current velocity. From a fish's viewpoint the plankton approach either head-on or offset at varied distances from the fish's position. We present a model that describes the relative motion of particles as they approach and pass a foraging fish at different offset distances, and the rate of change in apparent size as they close on a fish. In addition, a series of experiments of fish feeding on plankton in a flume at increasing current velocities revealed that two basic tactics are utilized. At low current velocities (<10-14 cm s m 1), the fish swims toward the prey, whereas at higher current velocities the fish tends to fall back with the current to capture a prey item. The model and experimental results are discussed in terms of the visual problems associated with the detection and tracking of items in motion.  相似文献   

9.
Scavengers may benefit from the availability of dead animals along roads that result from collisions with vehicles. However, roads are also considered risky places for many species. Animal habitat selection patterns usually balance energy intake with mortality risk. In this work we analyzed the foraging space use of an assemblage of diurnal scavenging raptors in relation to distance from roads in northwest Patagonia. We selected patches at different distances from roads, and placed a sheep carcass in each patch during the night (n = 18 carcasses in total). In general, carcasses near roads were detected by diurnal scavenging raptors much faster than those far from roads. Smaller raptors such as southern caracaras (Caracara plancus), chimango caracaras (Milvago chimango), and black vultures (Coragyps atratus), were commonly associated with roads both in terms of overall detections and scavenging activities. Southern and chimango caracaras proved to be very good at detecting carcasses, were faster to land in order to feed from them, and were found in greater numbers near roads than far from them. Even though Andean condors (Vultur gryphus) and black-chested buzzard-eagles (Geranoaetus melanoleucus) flew all over the area, they chose to feed far from roads. Our work emphasizes that some scavengers have taken advantage of the novel food resources provided by roads whereas others are reluctant to feed near them. Within a scenario of an increasing number of roads, some species can extend their distributions favoring competition and biotic homogenization processes within original communities. We highlight the importance of taking into account large flying scavengers in land-use planning. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号