首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNA-223 is a key factor in osteoclast differentiation   总被引:3,自引:0,他引:3  
MicroRNAs (miRNAs) are a class of noncording RNAs that control gene expression by translational inhibition and messenger RNAs (mRNAs) degradation in plants and animals. Although miRNAs have been implicated in developmental and homeostatic events of vertebrates and invertebrates, the role of miRNAs in bone metabolism has not been explored. Here, we show that microRNA-223 (miR-223) is expressed in RAW264.7 cells, mouse osteoclast precursor cell lines, and plays a critical role in osteoclast differentiation. We constructed miR-223 short interfering RNA (siRNA) or precursor miR-223 (pre-miR-223) overexpression retroviral vectors, and established miR-223 knockdown by siRNA or pre-miR-223 overexpression in stably infected RAW264.7 cells. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were observed in miR-223 knockdown cells as well as control cells. In contrast, pre-miR-223 overexpression completely blocked TRAP-positive multinucleated cell formation compared with control cells. Apoptotic cells were not observed in this study. Our results indicate that miR-223 plays an essential role during osteoclast differentiation, and miR-223 might be a viable therapeutic target for a range of bone metabolic disorders with excess osteoclast activity.  相似文献   

2.
Although document studies (including ours) have been reported the achieved in vitro osteoclastic cellular model establishment from the RAW264.7 cell lineage, there was no study directly reported that American Type Culture Collection (ATCC) cell bank has various RAW264.7 cell lineages. Besides that, for our knowledge there was only one study compared the two different RAW264.7TIB-71 and RAW264.7CRL-2278 cell lineages for their osteoclastic differentiation, and they concluded that the RAW264.7CRL-2278 demonstrated to generate much osteoclast than RAW264.7TIB-71. However, on the contrary to their results we noticed the fusion of RAW264.7TIB-71 in our previous studies was much compromising. Therefore, we try to explore the two cell lineages for their properties in osteoclastic differentiation with an in-depth cellular cytoskeletal study. Our current study has showed that comparing to the RAW264.7CRL-2278, RAW264.7TIB-71 demonstrated a much higher efficacies for RANKL-stimulated osteoclastic differentiation. Besides that, in our depth cytoskeletal studies, we found that the RANKL-induced RAW264.7TIB-71 cells could finally differentiate into mature osteoclasts. However, regardless the various pre-treatment conditions, there was no mature osteoclast formed in RANKL-induced RAW264.7CRL-2278 cell lineage.  相似文献   

3.
4.
Osteoclasts are large multinucleated cells that arise from the fusion of cells from the monocyte/macrophage lineage. Osteoclastogenesis is mediated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL) and involves a complex multistep process that requires numerous other elements, many of which remain undefined. The primary aim of this project was to identify novel factors which regulate osteoclastogenesis. To carry out this investigation, microarray analysis was performed comparing two pre-osteoclast cell lines generated from RAW264.7 macrophages: one that has the capacity to fuse forming large multinucleated cells and one that does not fuse. It was found that CD109 was up-regulated by>17-fold in the osteoclast forming cell line when compared to the cell line that does not fuse, at day 2 of the differentiation process. Results obtained with microarray were confirmed by RT-qPCR and Western blot analyses in the two cell lines, in the parental RAW264.7 cell line, as well as primary murine monocytes from bone marrow. A significant increase of CD109 mRNA and protein expression during osteoclastogenesis occurred in all tested cell types. In order to characterize the role of CD109 in osteoclastogenesis, CD109 stable knockdown cell lines were established and fusion of osteoclast precursors into osteoclasts was assessed. It was found that CD109 knockdown cell lines were less capable of forming large multinucleated osteoclasts. It has been shown here that CD109 is expressed in monocytes undergoing RANKL-induced osteoclastogenesis. Moreover, when CD109 expression is suppressed in vitro, osteoclast formation decreases. This suggests that CD109 might be an important regulator of osteoclastogenesis. Further research is needed in order to characterize the role played by CD109 in regulation of osteoclast differentiation.  相似文献   

5.
Persistent apical periodontitis (PAP) is characterized by refractory inflammation and progressive bone destruction. Enterococcus faecalis infection is considered an important etiological factor for the development of PAP, although the exact mechanisms remain unknown. This study aimed at investigating the role of E. faecalis in cell proliferation, inflammatory reactions and osteoclast differentiation of macrophages using an in vitro infection model of osteoclast precursor RAW264.7 cells. A cell viability assay of cultured RAW264.7 cells exposed to live E. faecalis at a multiplicity of infection of 100 for 2 h, indicated that the infection exhibited no cytotoxic effect. Transmission electron microscopy images revealed no apoptotic changes but a rise of metabolic activity and phagocytic features in the infected RAW264.7 cells. Confocal laser scanning microscopic and flow cytometric analysis indicated that the phagocytosis of RAW264.7 cells was activated by E. faecalis infection. Furthermore, quantitative real-time PCR assays demonstrated that the expression of inflammatory cytokines was remarkably elevated in infected RAW264.7 cells. Differentiation of infected RAW264.7 cells into osteoclasts was remarkably attenuated, and expression of osteoclast marker genes as well as fusogenic genes significantly dropped. In summary, E. faecalis appears to attenuate osteoclastic differentiation of RAW264.7 precursor cells, rather stimulates them to function as macrophages.  相似文献   

6.
Eph受体是酪氨酸蛋白激酶受体家族中最大的亚家族,ephrin(Eph受体相互作用蛋白)是其配体,它们是膜结合蛋白,相互依赖进行信号转导.内居蛋白(syntenin)与Pick1属于PDZ结构域(PSD-95/Dlg-/Zo-1 domain)蛋白,报道称能与ephrinB配体结合,但是否受Eph受体调控尚未见报道.以RAW264.7细胞株为研究对象,通过蛋白质印迹及/或免疫荧光分析显示RAW264.7细胞经RANKL诱导的破骨细胞表达ephrinB2、内居蛋白(syntenin)和Pick1三个蛋白质.将提前成簇的可溶性EphB4蛋白加入培养液,与ephrinB2配体结合,用来研究EphB4/ephrinB2逆向信号对syntenin和Pick1表达水平变化的影响.免疫印迹及Real-time RT-PCR分析结果显示,在EphB4-Fc实验组中Pick1的蛋白质及mRNA水平都有明显增加,然而在EphB4-Fc实验组与Fc对照组别间syntenin的蛋白质及mRNA水平未见明显变化.免疫共沉淀结果显示,syntenin和Pick1不能与ephrinB2共沉淀.以上结果初步探索了体外破骨细胞分化过程中,EphB4/ephrinB2逆向信号对PDZ结构域蛋白(ephrinB2配体潜在的下游信号分子)表达变化的调控.  相似文献   

7.
8.
Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.  相似文献   

9.
10.
Accumulating evidences suggest that Herba epimedii has the potential benefits against osteoporosis. However, previous studies were focused on the crude extract, total flavonoids (TF) and icariin (ICA), and the detailed molecular mechanisms of action and structure–activity relationship (SAR) remain unclear. Herein we aimed to systematically investigate the effects of Herba epimedii flavonoids (HEF) on the activity of osteoclasts, and explore the potential SAR. Both ICA and baohuoside-1 (BS) significantly inhibited the proliferation of RAW 264.7 cells (IC50 25 μM and 67 μM, respectively). Treatment of ICA resulted in G2/M arrest and apoptosis in RAW 264.7 cells as early as 12 h. Besides, HEF remarkably suppressed vitamin D-induced differentiation of osteoclasts in rabbit bone marrow cells and the bone resorption of rabbit mature osteoclasts in vitro. It is notable that the inhibitory effect of 100 μM ICA and BS on osteoclast formation is almost 90%; and the inhibition rate on bone resorption is 50% and 80%, respectively. Besides, RANKL-induced osteoclast formation from RAW 264.7 cells and the expression of TRAP, CA II, CTSK and MMP-9 was significantly reduced by the treatment of 25 μM HEF and 17β-estradiol (ES), and the inhibitory strength increases in the order TF < ES < ICA < BS, which was blocked by ICI182780 suggesting that the regulation of osteoclast activity might be ER dependent. Furthermore, the free hydroxyl group at C-7 of BS played an important role in the SAR for anti-osteoclast action. To conclude, HEF could regulate the formation and activity of osteoclasts by inhibiting the proliferation and differentiation, inducing apoptosis and cell cycle arrest and suppressing bone resorption of osteoclasts. Changes in osteoclast activity are probably mediated predominantly by interaction with nuclear estrogen receptors and via mitochondrial pathway. HEF, especially BS, has great potential for the prevention and treatment of osteoporosis.  相似文献   

11.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   

12.

Introduction

Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts.

Methods

miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3.

Results

miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition.

Conclusions

miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA.  相似文献   

13.
TGF-beta increases bone resorption in vivo and greatly increases osteoclast formation stimulated by receptor activator of NF-kappaB ligand (RANKL) in vitro. TGF-beta does not independently affect the differentiation state of RAW264.7 preosteoclasts, but increases cell attachment to vitronectin. This effect is mediated by increased expression of alphaV integrin subunit mRNA and protein. Concomitant with induction of osteoclast differentiation, RANKL causes relocation of alphaV to focal sites in the cell. This effect is potentiated by TGF-beta. Integrin blockade disrupts both attachment to vitronectin and RANKL-induced osteoclast formation, but culture on vitronectin has little effect. Ectopic expression of alphaV stimulates multinucleation of RAW264.7 cells and increases the number of osteoclasts formed in the presence of RANKL. These data suggest that TGF-beta potentiates RANKL-induced osteoclast formation, in part by increased expression of the alphaV integrin subunit, which may contribute to cell fusion.  相似文献   

14.
In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from wild type or genetically manipulated mouse lines. These cells represent a standardized and theoretically unlimited source for osteoclast-associated research projects.  相似文献   

15.
BackgroundSome microRNAs (miRNAs) are involved in osteogenic differentiation. In recent years, increasing evidences have revealed that exosomes contain specific miRNAs. However, the effect and mechanism of miR-23a-5p-containing exosomes in osteoblast remain largely unclear.MethodsWe extracted exosomes from RANKL-induced RAW 264.7 cells, and identified exosomes via transmission electron microscopy, western blot and flow cytometry analysis. In addition, exosome secretion was inhibited by GW4869 and Rab27a siRNAs. miR-23a-5p expression was analyzed by qRT-PCR, and the related protein levels were examined by western blot assay. Furthermore, the number and distribution of osteoclasts were detected by TRAP staining, and early osteogenesis was evaluated by ALP staining. Combination of YAP1 and Runx2 was verified by Co-IP assay, and the regulation of miR-23a-5p and Runx2 was measured by dual luciferase reporter assay.ResultsWe successfully extracted exosomes from RANKL-induced RAW 264.7 cells, and successfully verified exosomes morphology. We also indicated that miR-23a-5p was highly expressed in exosomes from RANKL-induced RAW 264.7 cells, and osteoclast-derived miR-23a-5p-containing exosomes inhibited osteoblast activity, while its inhibition weakened osteoclasts. In mechanism, we demonstrated that Runx2 was a target gene of miR-23a-5p, YAP interacted with Runx2, and YAP or Runx2 inhibited MT1DP expression. In addition, we proved that knockdown of MT1DP facilitated osteogenic differentiation by regulating FoxA1 and Runx2.ConclusionsWe demonstrated that osteoclast-derived miR-23a-5p-containing exosomes could efficiently suppress osteogenic differentiation by inhibiting Runx2 and promoting YAP1-mediated MT1DP. Therefore, we suggested miR-23a-5p in exosomes might provide a novel mechanism for osteoblast function.  相似文献   

16.
17.
Double-stranded RNA-dependent protein kinase (PKR) plays a critical role in antiviral defence of the host cells. PKR is also involved in cell cycle progression, cell proliferation, cell differentiation, tumorigenesis, and apoptosis. We previously reported that PKR is required for differentiation and calcification of osteoblasts. However, it is unknown about the role of PKR in osteoclast differentiation. A dominant-negative PKR mutant cDNA, in which the amino acid lysine at 296 was replaced with arginine, was transfected into RAW264.7 cells. We have established the cell line that stably expresses the PKR mutant gene (PKR-K/R). Phosphorylation of PKR and α-subunit of eukaryotic initiation factor 2 was not stimulated by polyinosic-polycytidylic acid in the PKR-K/R cells. RANKL stimulated the formation of TRAP-positive multinuclear cells in RAW264.7 cells. However, TRAP-positive multinuclear cells were not formed in the PKR-K/R cells even when the cells were stimulated with higher doses of RANKL. A specific inhibitor of PKR, 2-aminopurine, also suppressed the RANKL-induced osteoclast differentiation in RAW264.7 cells. The expression of macrophage fusion receptor and dendritic cell-specific transmembrane protein significantly decreased in the PKR-K/R cells by real time PCR analysis. The results of RT-PCR revealed that the mRNA expression of osteoclast markers (cathepsin K and calcitonin receptor) was suppressed in the PKR-K/R cells and RAW264.7 cells treated with 2-aminopurine. Expression of NF-κB protein was suppressed in the PKR-K/R cells and 2-aminopurine-treated RAW264.7 cells. The level of STAT1 protein expression was elevated in the PKR-K/R cells compared with that of the wild-type cells. Immunohistochemical study showed that PKR was localized in osteoclasts of metatarsal bone of newborn mouse. The finding that the PKR-positive multinuclear cells should be osteoclasts was confirmed by TRAP-staining. Our present study indicates that PKR plays important roles in the differentiation of osteoclasts.  相似文献   

18.
19.
Osteoclasts are bone-resorbing cells that are critical for the normal formation and maintenance of teeth and skeleton. Osteoclast deficiency can contribute to heterotopic ossification (HO), a pathology that is particularly detrimental to the mechanical functions of joints, valves and blood vessels. On the other hand, osteoclast over-activity is a major cause of osteoporosis. A reliable method for controlled generation of osteoclasts would be useful as a potential autologous cell therapy for HO, as well as high-throughput drug screening for anti-osteoporotic drugs. In this report, we describe the development of a cell engineering approach to control monocytic precursor cell differentiation to osteoclasts. Oligomerization of receptor activator of nuclear factor κB (RANK) is known to be essential for osteoclast differentiation from monocyte/macrophage precursors. We engineered a murine monocytic cell line, RAW264.7 to express a fusion protein comprising the intracellular RANK signaling domain and FK506-derived dimerization domains that bind to a small molecule chemical inducer of dimerization (CID). Virally infected cells expressing this fusion protein were treated with CID and dose-dependent induction of tartrate-resistant acid phosphatase activity, as well as multinucleated osteoclast formation were observed. Furthermore, NF-κB signaling was upregulated in a CID-dependent fashion, demonstrating effective RANK intracellular signaling. Functionally CID-induced osteoclasts had robust mineral resorptive activity in both two-dimensional and three-dimensional in vitro resorption assays. In addition, the CID-induced osteoclasts have the same life span as native RANKL-induced osteoclasts. Most importantly and crucially, the engineered cells differentiated into osteoclasts that were resistant to the potent osteoclast inhibitor, osteoprotegerin. Taken together, these studies are the first to describe a method for inducible control of monocytic precursor differentiation to osteoclasts that may be useful for future development of an engineered autologous cell therapy as well as high-throughput drug testing systems to treat diseases of osteoclast over-activity that are independent of osteoprotegerin.  相似文献   

20.
DC-STAMP is a key regulating molecule of osteoclastogenesis and osteoclast precursor (OCP) fusion. Emerging lines of evidence showed that microRNAs play crucial roles in bone metabolism and osteoclast differentiation, but no microRNA has yet been reported to be directly related to OCPs fusion. Through a microarray, we found that the expression of miR-7b in RAW264.7 cells was significantly decreased after induction with M-CSF and RANKL. The overexpression of miR-7b in RAW264.7 cells attenuated the number of TRAP-positive cells number and the formation of multinucleated cells, whereas the inhibition of miR-7b enhanced osteoclastogenesis. Through a dual luciferase reporter assay, we confirmed that miR-7b directly targets DC-STAMP. Other fusogenic molecules, such as CD47, ATP6v0d2, and OC-STAMP, were detected to be down-regulated in accordance with the inhibition of DC-STAMP. Because DC-STAMP also participates in osteoclast differentiation through the ITAM-ITIM network, multiple osteoclast-specific genes in the ITAM-ITIM network were detected to identify how DC-STAMP is involved in this process. The results showed that molecules associated with the ITAM-ITIM network, such as NFATc1 and OSCAR, which are crucial in osteoclastogenesis, were consistently altered due to DC-STAMP inhibition. These findings suggest that miR-7b inhibits osteoclastogenesis and cell-cell fusion by directly targeting DC-STAMP. In addition, the inhibition of DC-STAMP and its downstream signals changed the expression of other fusogenic genes and key regulating genes, such as Nfatc1, c-fos, Akt, Irf8, Mapk1, and Traf6. In conclusion, our findings indicate that miR-7b may be a potential therapeutic target for the treatment of osteoclast-related bone disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号