首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In hybrid zones in which two divergent taxa come into secondary contact and interbreed, selection can maintain phenotypic diversity despite widespread genetic introgression. Red‐breasted (Sphyrapicus ruber) and red‐naped (S. nuchalis) sapsuckers meet and hybridize along a narrow contact zone that stretches from northern California to southern British Columbia. We found strong evidence for changes in the structure of this hybrid zone across time, with significant temporal shifts in allele frequencies and in the proportions of parental phenotypes across the landscape. In addition to these shifts, we found that differences in plumage predict genetic differences (R2 = 0.80), suggesting that plumage is a useful proxy for assessing ancestry. We also found a significant bimodal distribution of hybrids across the contact zone, suggesting that premating barriers may be driving reproductive isolation, perhaps as a result of assortative mating based on plumage differences. However, despite evidence of selection and strong patterns of population structure between parental samples, we found only weak patterns of genetic divergence. Using museum specimens and genomic data, this study of sapsuckers provides insight into the ways in which phenotypic and genetic structure have changed over a 40‐year period, as well as insight into the mechanisms that may contribute to the maintenance of the hybrid zone over time.  相似文献   

2.
Red‐naped sapsuckers (Sphyrapicus nuchalis) are functionally important because they create sapwells and cavities that other species use for food and nesting. Red‐naped sapsucker ecology within aspen (Populus tremuloides) has been well studied, but relatively little is known about red‐naped sapsuckers in conifer forests. We used light detection and ranging (LiDAR) data to examine occupancy patterns of red‐naped sapsuckers in a conifer‐dominated system. We surveyed for sapsuckers at 162 sites in northern Idaho, USA, during 2009 and 2010. We used occupancy models and an information‐theoretic approach to model sapsucker occupancy as a function of four LiDAR‐based metrics that characterized vegetation structure and tree harvest, and one non‐LiDAR metric that characterized distance to major roads. We evaluated model support across a range of territory sizes using Akaike's information criterion. Top model support was highest at the 4‐ha extent, which suggested that 4 ha was the most relevant scale describing sapsucker occupancy. Sapsuckers were positively associated with variation of canopy height and harvested area, and negatively associated with shrub and large tree density. These results suggest that harvest regimes and structural diversity of vegetation at moderate extents (e.g., 4 ha) largely influence occurrence of red‐naped sapsuckers in conifer forests. Given the current and projected declines of aspen populations, it will be increasingly important to assess habitat relationships, as well as demographic characteristics, of aspen‐associated species such as red‐naped sapsuckers within conifer‐dominated systems to meet future management and conservation goals.  相似文献   

3.
Hybrid zones allow the measurement of gene flow across the genome, producing insight into the genomic architecture of speciation. Such analysis is particularly powerful when applied to multiple pairs of hybridizing species, as patterns of genomic differentiation can then be related to age of the hybridizing species, providing a view into the build‐up of differentiation over time. We examined 33 809 single nucleotide polymorphisms (SNPs) in three hybridizing woodpecker species: Red‐breasted, Red‐naped and Yellow‐bellied sapsuckers (Sphyrapicus ruber, Sphyrapicus nuchalis and Sphyrapicus varius), two of which (ruber and nuchalis) are much more closely related than each is to the third (varius). To identify positions of SNPs on chromosomes, we developed a localization method based on comparative genomics. We found narrow clines, bimodal distributions of hybrid indices and genomic regions with decreased rates of introgression. These results suggest moderately strong reproductive isolation among species and selection against specific hybrid genotypes. We found 19 small regions of strong differentiation between species, partly shared among species pairs, but no large regions of differentiation. An association analysis revealed a single strong‐effect candidate locus associated with plumage, possibly explaining mismatch among the three species in genomic relatedness and plumage similarity. Our comparative analysis of species pairs of different age and their hybrid zones showed that moderately strong reproductive isolation can occur with little genomic differentiation, but that reproductive isolation is incomplete even with much greater genomic differentiation, implying there are long periods of time when hybridization is possible if diverging populations are in geographic contact.  相似文献   

4.
Hybridization has presented a challenge for taxonomists and conservation biologists, since hybridizing forms could be stable evolutionary entities or ephemeral forms that are blending together. However, hybrid zones also provide a unique opportunity for evolutionary biologists who study the interaction between gene flow and reproductive isolation in speciation. Three forms of woodpeckers (sapsuckers; genus Sphyrapicus) in North America that are mostly geographically separated but hybridize with each other where they come into contact present a remarkable system for the study of hybridization. We provide the first comprehensive analysis of phenotypic and genetic variation across a hybrid zone between two of these forms, the red‐breasted Sphyrapicus ruber and yellow‐bellied S. varius sapsuckers. The objective was to infer whether selection maintains the differences between forms. Our analysis of eight morphometric and 20 plumage traits, and two molecular markers showed clear differences between the forms and roughly concordant clinal variation across a narrow hybrid zone. Thirty percent of sampled birds in the hybrid zone had mixed west/east genotypes at the genetic markers examined. The center of the genetic cline was located 20 km west of the crest of the Rocky Mountains. The width of the zone was 122 km, narrower than would be expected under neutral blending given reasonable estimates of the age of the zone and individual dispersal distances. Heterozygote deficit and cytonuclear disequilibrium at the centre of the hybrid zone suggested nonrandom mating or limited hybridization. Given these patterns and lack of evidence for habitat segregation we conclude that this hybrid zone is maintained by selection, most likely in the form of hybrid inferiority. This study provides an illustrative example of extensive hybridization between stable entities, providing additional evidence against the historical practice of treating hybridizing forms as members of the same species.  相似文献   

5.
Human activities alter patterns of biodiversity, particularly through species extinctions and range shifts. Two of these activities are human mediated transfer of species and contemporary climate change, and both allow previously isolated genotypes to come into contact and hybridize, potentially altering speciation rates. Hybrids have been shown to survive environmental conditions not tolerated by either parent, suggesting that, under some circumstances, hybrids may be able to expand their ranges and perform well under rapidly changing conditions. However, studies assessing how hybridization influences contemporary range shifts are scarce. We performed crosses on Pyura herdmani and Pyura stolonifera (Chordata, Tunicata), two closely related marine invertebrate species that are ecologically dominant and can hybridize. These sister species live in sympatry along the coasts of southern Africa, but one has a disjunct distribution that includes northern hemisphere sites. We experimentally assessed the performance of hybrid and parental crosses using different temperature regimes, including temperatures predicted under future climate change scenarios. We found that hybrids showed lower performance than parental crosses at the experimental temperatures, suggesting that hybrids are unlikely to expand their ranges to new environments. In turn, we found that the more widespread species performed better at a wide array of temperatures, indicating that this parental species may cope better with future conditions. This study illustrates how offspring fitness may provide key insights to predict range expansions and how contemporary climate change may mediate both the ability of hybrids to expand their ranges and the occurrence of speciation as a result of hybridization.  相似文献   

6.
The formation of stable genetic boundaries between emerging species is often diagnosed by reduced hybrid fitness relative to parental taxa. This reduced fitness can arise from endogenous and/or exogenous barriers to gene flow. Although detecting exogenous barriers in nature is difficult, we can estimate the role of ecological divergence in driving species boundaries by integrating molecular and ecological niche modelling tools. Here, we focus on a three‐way secondary contact zone between three viper species (Vipera aspis, V. latastei and V. seoanei) to test for the contribution of ecological divergence to the development of reproductive barriers at several species traits (morphology, nuclear DNA and mitochondrial DNA). Both the nuclear and mitochondrial data show that all taxa are genetically distinct and that the sister species V. aspis and V. latastei hybridize frequently and backcross over several generations. We find that the three taxa have diverged ecologically and meet at a hybrid zone coincident with a steep ecotone between the Atlantic and Mediterranean biogeographical provinces. Integrating landscape and genetic approaches, we show that hybridization is spatially restricted to habitats that are suboptimal for parental taxa. Together, these results suggest that niche separation and adaptation to an ecological gradient confer an important barrier to gene flow among taxa that have not achieved complete reproductive isolation.  相似文献   

7.
Using spatial predictions of future threats to biodiversity, we assessed for the first time the relative potential impacts of future land use and climate change on the threat status of plant species. We thus estimated how many taxa could be affected by future threats that are usually not included in current IUCN Red List assessments. Here, we computed the Red List status including future threats of 227 Proteaceae taxa endemic to the Cape Floristic Region, South Africa, and compared this with their Red List status excluding future threats. We developed eight different land use and climate change scenarios for the year 2020, providing a range of best‐ to worst‐case scenarios. Four scenarios include only the effects of future land use change, while the other four also include the impacts of projected anthropogenic climate change (HadCM2 IS92a GGa), using niche‐based models. Up to a third of the 227 Proteaceae taxa are uplisted (become more threatened) by up to three threat categories if future threats as predicted for 2020 are included, and the proportion of threatened Proteaceae taxa rises on average by 9% (range 2–16%), depending on the scenario. With increasing severity of the scenarios, the proportion of Critically Endangered taxa increases from about 1% to 7% and almost 2% of the 227 Proteaceae taxa become Extinct because of climate change. Overall, climate change has the most severe effects on the Proteaceae, but land use change also severely affects some taxa. Most of the threatened taxa occur in low‐lying coastal areas, but the proportion of threatened taxa changes considerably in inland mountain areas if future threats are included. Our approach gives important insights into how, where and when future threats could affect species persistence and can in a sense be seen as a test of the value of planned interventions for conservation.  相似文献   

8.
The role of environment and the relative significance of endogenous versus exogenous selection in shaping hybrid zones have been crucial issues in the studies of hybridization. Recent advances in ecological niche modeling (ENM) offer new methodological tools, especially in combination with the genotyping of individuals in the hybrid zone. Here, we study the hybrid zone between the widely known spices Origanum onites and Origanum vulgare ssp. hirtum in Crete. We analyze the genetic structure of both parental taxa and their hybrid Origanum × intercendens using AFLP markers on 15 sympatric and 12 allopatric populations and employ ecological niche modeling and niche similarity tests to study their niche patterns. We complement these analyses with seed viability measurements. Our study revealed that the hybridizing taxa O. onites and O. vulgare ssp. hirtum and the resulting genotypic classes showed geographical and environmental niche similarities based on the predictions of ENMs and the subsequent similarity tests. The occurrence of the hybrid zone is not directly dependent on environmental factors which favor the fitness of the hybrid compared to the parental taxa, but rather on aspects such as historical factors and management practices, which may contribute to the localization and maintenance of the contact zone between parental species. Our results suggest that if a minimum required niche differentiation between genotypic classes is not achieved, environmental dependence might not have a prominent role on the outcome of the hybridization.  相似文献   

9.
Empirically derived species distributions models (SDMs) are increasingly relied upon to forecast species vulnerabilities to future climate change. However, many of the assumptions of SDMs may be violated when they are used to project species distributions across significant climate change events. In particular, SDM's in theory assume stable fundamental niches, but in practice, they assume stable realized niches. The assumption of a fixed realized niche relative to climate variables remains unlikely for various reasons, particularly if novel future climates open up currently unavailable portions of species’ fundamental niches. To demonstrate this effect, we compare the climate distributions for fossil‐pollen data from 21 to 15 ka bp (relying on paleoclimate simulations) when communities and climates with no modern analog were common across North America to observed modern pollen assemblages. We test how well SDMs are able to project 20th century pollen‐based taxon distributions with models calibrated using data from 21 to 15 ka. We find that taxa which were abundant in areas with no‐analog late glacial climates, such as Fraxinus, Ostrya/Carpinus and Ulmus, substantially shifted their realized niches from the late glacial period to present. SDMs for these taxa had low predictive accuracy when projected to modern climates despite demonstrating high predictive accuracy for late glacial pollen distributions. For other taxa, e.g. Quercus, Picea, Pinus strobus, had relatively stable realized niches and models for these taxa tended to have higher predictive accuracy when projected to present. Our findings reinforce the point that a realized niche at any one time often represents only a subset of the climate conditions in which a taxon can persist. Projections from SDMs into future climate conditions that are based solely on contemporary realized distributions are potentially misleading for assessing the vulnerability of species to future climate change.  相似文献   

10.
Cold‐adapted taxa are experiencing severe range shifts due to climate change and are expected to suffer a significant reduction of their climatically suitable habitats in the next few decades. However, it has been proposed that taxa with sufficient standing genetic and ecologic diversity will better withstand climate change. These taxa are typically more broadly distributed in geographic and ecological niche space, therefore they are likely to endure higher levels of populations loss than more restricted, less diverse taxa before the effects of those losses impact their overall diversity and resilience. Here, we explore the potential relationship between intraspecific genetic and ecological diversity and future resilience, using the cold‐adapted plant Primula farinosa. We employ high‐throughput sequencing to assess the genomic diversity of phylogeographic lineages in P. farinosa. Additionally, we use current climatic variables to define niche breadth and niche differentiation across lineages. Finally, we calibrate species distribution models (SDMs) and project the climatic preferences of each lineage on future climate to predict lineage‐specific shifts in climatically suitable habitats. Our study predicts relative persistence of future suitable habitats for the most genetically and ecologically diverse lineages of the cold‐adapted P. farinosa, but significant reduction of them for two out of its four lineages. While we do not provide specific experiments aimed at identifying the causal links between genetic diversity and resilience to climate change, our results indicate that greater genetic diversity and wider ecological breadth may buffer species responses to rapid climatic changes. This study further highlights the importance of integrating knowledge of intraspecific diversity for predicting species fate in response to climate change.  相似文献   

11.
1. Recent proliferation of hybridisation in response to anthropogenic ecosystem change, coupled with increasing evidence of the importance of ancient hybridisation events in the formation of many species, has moved hybridisation to the forefront of evolutionary theory. 2. In spite of this, the mechanisms (e.g. differences in trophic ecology) by which hybrids co‐exist with parental taxa are poorly understood. A unique hybrid zone exists in Irish freshwater systems, whereby hybrid offspring off two non‐native cyprinid fishes often outnumber both parental species. 3. Using stable isotope and gut content analyses, we determined the trophic interactions between sympatric populations of roach (Rutilus rutilus), bream (Abramis brama) and their hybrid in lacustrine habitats. 4. The diet of all three groups displayed little variation across the study systems, and dietary overlap was observed between both parental species and hybrids. Hybrids displayed diet, niche breadth and trophic position that were intermediate between the two parental species while also exhibiting greater flexibility in diet across systems.  相似文献   

12.
Three species of closely related woodpeckers (sapsuckers; Sphyrapicus) hybridize where they come into contact, presenting a rare ‘λ‐shape’ meeting of hybrid zones. Two of the three arms of this hybrid zone are located on either side of the Interior Plateau of British Columbia, Canada bordering the foothills of the Coast Mountains and the Rocky Mountains. The third arm is located in the eastern foothills of the Rocky Mountains. The zones of hybridization present high variability of phenotypes and alleles in relatively small areas and provide an opportunity to examine levels of reproductive isolation between the taxa involved. We examined phenotypes (morphometric traits and plumage) and genotypes of 175 live birds across the two hybrid zones. We used the Genotyping By Sequencing (GBS) method to identify 180 partially diagnostic single nucleotide polymorphisms (SNPs) to generate a genetic hybrid index (GHI) for each bird. Phenotypically diverged S. ruber and S. nuchalis are genetically closely related, while S. nuchalis and S. varius have similar plumage but are well separated at the genetic markers studied. The width of both hybrid zones is narrower than expected under neutrality, and analyses of both genotypes and phenotypes indicate that hybrids are rare in the hybrid zone. Rarity of hybrids indicates assortative mating and/or some form of fitness reduction in hybrids, which might maintain the species complex despite close genetic distance and introgression. These findings further support the treatment of the three taxa as distinct species.  相似文献   

13.
The impact of ecological factors on natural hybridization is of widespread interest. Here, we asked whether climate niche influences hybridization between the two closely related plant species Myriophyllum sibiricum and M. spicatum. Eight microsatellite loci and two chloroplast fragments were used to investigate the occurrence of hybridization between these two species in two co‐occurring regions: north‐east China (NEC) and the Qinghai‐Tibetan Plateau (QTP). The climate niches of the species were quantified by principal component analysis with bioclimatic data, and niche comparisons were performed between the two species in each region. Reciprocal hybridization was observed, and M. sibiricum was favoured as the maternal species. Furthermore, hybrids were rare in NEC but common in the QTP. Accordingly, in NEC, the two species were climatically distinct, and hybrids only occurred in the narrow geographical or ecological transition zone, whereas in the QTP, obvious niche overlaps were found for the two species, and hybrids occurred in multiple contact zones. This association between hybridization pattern and climate niche similarity suggests that the level of hybridization was promoted by niche overlap. Compared with the parental species, similar climate niches were found for the hybrid populations in the QTP, indicating that other environmental factors rather than climate were important for hybrid persistence. Our findings highlight the significance of climate niche with respect to hybridization patterns in plants.  相似文献   

14.
The concentrations of selected elements and their biological absorption coefficients were determined for leaves from plants in native stands and reciprocal transplant gardens to determine whether niche differentiation occurs among the parental taxa and their hybrids in the big sagebrush hybrid zone in Utah. The bounded hybrid superiority model predicts such niche differentiation, while the ecologically neutral dynamic equilibrium model predicts complete niche overlap, at least in the vicinity of the hybrid zone. The concentrations of elements in the leaves of site-indigenous sagebrush and the biological absorption coefficients differed significantly between the subspecies and between either parental taxon and hybrids. Within reciprocal transplant gardens, both the elemental concentrations and the biological absorption coefficients differed among the gardens and taxa. Significant genotype-by-environment interactions were observed for several essential elements. Niche differentiation was evident as correspondence analyses ordinated the parental taxa and hybrids into separate groups even when raised in the same garden. These findings support the ecologically based bounded hybrid superiority model and suggest that the big sagebrush parental taxa and their hybrids have adapted to their respective unique habitats.  相似文献   

15.
To understand factors shaping species boundaries in closely related taxa, a powerful approach is to compare levels of genetic admixture at multiple points of contact and determine how this relates to intrinsic and extrinsic factors, such as genetic, morphological and ecological differentiation. In the Australian Alps, the threatened alpine bog skink Pseudemoia cryodroma co‐occurs with two morphologically and ecologically similar congeners, P. entrecasteauxii and P. pagenstecheri, and all three species are suspected to hybridize. We predicted that the frequency of hybridization should be negatively correlated with genetic divergence, morphological differentiation and microhabitat separation. We tested this hypothesis using a mitochondrial locus, 13 microsatellite loci, morphological and microhabitat data and compared results across three geographically isolated sites. Despite strong genetic structure between species, we detected hybridization between all species pairs, including evidence of backcrossed individuals at the two sites where all three species are syntopic. Hybridization frequencies were not consistently associated with genetic, morphological or ecological differentiation. Furthermore, P. entrecasteauxii and P. pagenstecheri only hybridized at the two sites where they are syntopic with P. cryodroma, but not at the largest site where P. cryodroma was not recorded, suggesting that P. cryodroma may serve as a bridging species. This study reveals the complex dynamics within a three species hybrid zone and provides a baseline for assessing the impact of climate change and anthropogenic habitat modification on future hybridization frequencies.  相似文献   

16.
Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy‐forming seaweeds provide an ideal system to predict the potential impact of climate‐change on rocky‐shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate‐change induced range‐shift of Fucus distichus, the dominant canopy‐forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold‐temperate shores of the northern hemisphere will display the greatest distributional change of Fdistichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range‐limiting factors and 169 occurrence records. Using three climate‐change scenarios, we projected habitat suitability of Fdistichus – and its niche overlap with three dominant temperate macroalgae – until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of Fdistichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold‐temperate to subarctic regions, new areas of niche overlap were predicted between Fdistichus and intertidal macroalgae immigrating from the south. While climate‐change threatens intertidal seaweeds in warm‐temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed‐harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.  相似文献   

17.
In the current context of ongoing global change, the understanding of how the niches of invasive species may change between different geographical areas or time periods is extremely important for the early detection and control of future invasions. We evaluated the effect of climate and non‐climate variables and the sensitivity to various spatial resolutions (i.e. 1 and 20 km) on niche changes during the invasion of Taraxacum officinale and Ulex europaeus in South America. We estimated niche changes using a combination of principal components analyses (PCA) and reciprocal Ecological Niche Modelling (rENM). We further investigated future invasion dynamics under a severe warming scenario for 2050 to unravel the role of niche shifts in the future potential distribution of the species. We observed a clear niche expansion for both species in South America towards higher temperature, precipitation and radiation relative to their native ranges. In contrast, the set of environmental conditions only occupied in the native ranges (i.e. niche unfilling) were less relevant. The magnitude of the niche shifts did not depend on the resolution of the variables. Models calibrated with occurrences from native range predicted large suitable areas in South America (outside of the Andes range) where T. officinale and U. europaeus are currently absent. Additionally, both species could increase their potential distributions by 2050, mostly in the southern part of the continent. In addition, the niche unfilling suggests high potential to invade additional regions in the future, which is extremely relevant considering the current impact of these species in the Southern Hemisphere. These findings confirm that invasive species can occupy new niches that are not predictable from knowledge based only on climate variables or information from the native range.  相似文献   

18.
Several studies have observed that taxa below the level of species can vary in the degree to which they differ from one another in the environmental space they occupy. These patterns of within‐species niche variation raise the question of whether these differences should be considered when developing models for predicting the potential effects of climate change on species distributions. We address this question with two divergent datasets, one on sister species and subspecies from the European herpetofauna, the other on subspecies of breeding birds in North America. Atlas and observation data come from the Atlas of Amphibians and Reptiles in Europe and the North American Breeding Bird Survey, respectively. We develop boosted regression tree models of climate–distribution relationships and project the predicted geographic range of each taxon using interpolated weather station data and modeled climate for the year 2080. We find differences between models that distinguish the contributions of subtaxa and those that do not, in terms of prediction of both current and future distributions. In comparison to models that ignore sub‐taxon structure, models that incorporate this structure generally predict larger areas of suitable conditions, consistently perform better, if only marginally, as measured by cross‐validated AUC, and can reveal divergent potential effects of climate change on subtaxa. Differences in niche occupancy and predicted distribution appear between closely related taxa regardless of their phylogenetic distinctness. For these reasons, information on subtaxon membership and phylogeographic structure should be included in modeling exercises when available, in order to identify both the contribution of these units to the niche occupancy of species and the potentially distinct responses of subtaxa to climate change.  相似文献   

19.
Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries between Pinus strobiformis and Pinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate‐associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build‐up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.  相似文献   

20.
Glaucous‐winged gulls Larus glaucescens and western gulls L. occidentalis hybridize extensively where their ranges overlap along the coasts of Washington and Oregon, producing a continuum of phenotypic intergrades between the two parental species. This zone often is considered an example of geographically bounded hybrid superiority, but studies of relative success among parental types and hybrids have not provided consistent support for this model. We tested the predictions of the dynamic‐equilibrium and geographically bounded hybrid superiority hypotheses by studying mate choice and reproductive success among gulls on Protection Island, Washington, the largest breeding colony of glaucous‐winged/western gulls within the hybrid zone. The dynamic‐equilibrium hypothesis posits that hybridization due to dispersal balances selection against less fit hybrids and assortative mating is adaptive. Geographically bounded hybrid superiority posits that hybrids are better fit than parental types within an ecotone between the environments to which the parental species are adapted, and a preference for hybrid mates is adaptive. Additionally, we investigated whether hatching success and nest site choice are correlated for Protection Island gulls. We assigned a hybrid index to each sample bird by examining plumage melanism and bare part coloration in the field. Sheltered nests contained larger clutches and exhibited increased hatching success, but choice of nest habitat was not associated with hybrid index. Western gull‐like pairs produced smaller third eggs; however, hybrid index was not correlated with clutch size or hatching success. Protection Island gulls did exhibit assortative mating. In short, we did not find strong support for either geographically bounded hybrid superiority or the dynamic‐equilibrium hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号