首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of human neutrophil functions by adenine nucleotides   总被引:3,自引:0,他引:3  
Previous work has shown that platelet-derived adenine nucleotides modulate neutrophil superoxide anion (O2-) generation. Additional studies were undertaken to characterize the effects of authentic adenosine (ADO) and its nucleotide derivatives on the inflammatory functions of human neutrophils. Stimulus-specific inhibition of neutrophil O2- generation by ADO in response to FMLP was verified. In addition, the ability of ATP, ADP, and AMP to limit neutrophil O2- generation induced by FMLP (0.2 to 0.5 microM) was demonstrated. The concentration producing 50% inhibition for nucleotide inhibition of neutrophil O2- generation was in the rank order of ADO (0.1 microM) less than AMP (0.5 microM) less than ADP less than or equal to ATP (5 microM). Guanine and inosine nucleotides (0.01 to 100 microM) did not inhibit FMLP-stimulated neutrophil O2- generation. Neutrophil degranulation in response to FMLP was only modestly inhibited by adenine nucleotides and ADO. Adenosine and ADP failed to affect chemotaxis of neutrophils stimulated with FMLP. The inability of non-metabolizable analogs to mimic the inhibitory effects of authentic ATP or ADP on the neutrophil O2- response suggested that metabolism of added nucleotides is necessary for their effectiveness. Both TLC and HPLC confirmed that ATP and ADP were converted to AMP and ADO after their incubation with unstimulated or FMLP-activated neutrophils. The addition of adenosine deaminase to neutrophil reaction mixtures in which conversion of added nucleotides was apparent removed detectable ADO but failed to completely abrogate the inhibition of neutrophil O2- generation by accumulated AMP. The kinetics of inhibition of FMLP-induced neutrophil O2- generation by ATP and ADP also indicated that conversion of these nucleotides to ADO and/or AMP may be essential for their ability to reduce neutrophil responses.  相似文献   

2.
Over the last few years, several studies showing that production of superoxide by neutrophils in response to chemotactic factors such as FMLP is enhanced after preincubation of the cells with granulocyte-macrophage (GM)-CSF or TNF-alpha have been published. Subsequent reports have indicated that this effect of the cytokines may be mediated by modulation of the number and/or affinity of surface receptors for FMLP. In the present study we have investigated the effect of preincubation with GM-CSF and TNF-alpha on the oxidative burst induced by sodium fluoride and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-agents which directly activate guanine-nucleotide binding proteins in neutrophils. Pretreatment of neutrophils with either GM-CSF or TNF-alpha dose-dependently enhanced the production of superoxide induced by NaF, as determined by the superoxide dismutase-inhibitable reduction of ferricytochrome c. Furthermore, preincubation of neutrophils with these cytokines enhanced the production of hydrogen peroxide induced by GTP gamma S in electroporated neutrophils. Because both NaF and GTP gamma S directly activate G proteins independently of external receptor-G protein interaction, these results imply that both GM-CSF and TNF-alpha alter the neutrophil signal transduction pathway in response to subsequent agonists independently of a modulation in the expression of the cell surface receptors for such agonists.  相似文献   

3.
Spreading of neutrophils on protein-coated surfaces is a pivotal event in their ability to respond to soluble, physiologic agonists by releasing large amounts of hydrolases and oxidants. Using neutrophils plated on serum-, fibrinogen- or fibronectin-coated surfaces, we investigated the effect of human serum albumin (HSA) on spreading- dependent neutrophil responses. HSA suppressed the respiratory burst of neutrophils in response to tumor necrosis factor-alpha (TNF), complement component C5a or formylated peptide, but not phorbol myristate acetate. HSA was suppressive only if added before the onset of the respiratory burst, and suppression was reversed when HSA was removed. Likewise, HSA selectively and reversibly inhibited TNF-induced cell spreading and the associated fall in cAMP. However, HSA did not hinder TNF-induced cell adherence to the same protein-coated surfaces. We investigated cell surface sialoproteins as modulators of cell spreading and as targets for the anti-spreading action of HSA. Oxidation of the cell surface with periodate followed by reduction with 3H-borohydride and immunoblotting with specific mAbs helped identify the predominant sialoprotein on human neutrophils as CD43 (sialophorin, leukosialin). Treatment of neutrophils with C. perfringens sialidase desialylated CD43, markedly enhanced the ability of the cells to respond to TNF by spreading and undergoing a respiratory burst, and antagonized the ability of HSA to inhibit these responses. TNF-treated, adherent neutrophils shed CD43, and this was blocked by HSA, but not by ovalbumin. Exogenous neutrophil elastase removed CD43 from the neutrophil surface. HSA blocked the actions of both sialidase and elastase on CD43. In contrast, ovalbumin did not block the action of sialidase on CD43, and HSA did not inhibit the ability of sialidase to hydrolyze a synthetic substrate. These results suggested that HSA might bind CD43. In fact, the extracellular portion of CD43 bound to HSA- Sepharose, but not to ovalbumin- or glycylglycine-Sepharose. Finally, two mAbs recognizing different epitopes on CD43 mimicked HSA's inhibitory effects on neutrophil function. Thus, HSA can dissociate attachment of neutrophils from spreading. This dissociation may help neutrophils migrate along a chemotactic gradient, while decreasing their release of oxidants. CD43, a long, rigid molecule with a markedly negative charge, antagonizes neutrophil spreading. HSA appears to inhibit spreading-dependent neutrophil functions by binding to CD43 and interfering with the ability of neutrophils to shed it.  相似文献   

4.
The anti-neutrophil mAb PMN 7C3 and IIC4 inhibited the respiratory burst of neutrophils as measured by the generation of superoxide anion or hydrogen peroxide in response to PMA, serum-treated zymosan, and FMLP. To examine the effect of these mAb on neutrophil transmembrane potential, a fluorescent probe was used in a continuous assay. Compared with control cells, antibody-treated neutrophils were partially depolarized at rest and had a blunted response when stimulated. The F(ab)2 fragment of PMN 7C3 had similar effects on both the respiratory burst and transmembrane potential, whereas the Fab fragment did not. The unrelated antineutrophil mAb 31D8 had no effect on either the respiratory burst or on transmembrane potential. Neutrophils suspended in high potassium buffers also exhibited partial depolarization of the resting cell membrane and a blunted depolarization response to stimuli and produced less superoxide anion and hydrogen peroxide in response to stimuli than did control cells in physiologic buffer. Exposure of neutrophils to 2-deoxy-D-glucose resulted in dose- and time-dependent depression of the respiratory burst. 2-Deoxy-D-glucose also caused depolarization of the resting membrane and impaired subsequent stimulus-induced depolarization. Similar effects were seen with addition of iodoacetamide or depletion of glucose. The parallel effects of anti-neutrophil mAb, depolarizing buffers, and glycolytic inhibitors on both neutrophil membrane depolarization and activation of the respiratory burst indicate a close association between these two events. The evidence suggests that the inhibitory effects of these antibodies are mediated through partial membrane depolarization which interferes with signal transduction on subsequent stimulation of the cells. The impairment in oxidative responses to phorbol esters as well as to receptor-dependent activating agents points to interruption at a distal step, e.g., subsequent to Ca2+ mobilization.  相似文献   

5.
The novel calcium indicator fura red and the oxidative burst indicator dihydrorhodamine (both excited at 488 nm) were used in combination with multiparameter flow cytometry to allow simultaneous kinetic measurements of calcium fluxes and oxidative bursts in monocytes and granulocytes. Using this method it was possible to obtain direct evidence for the following cell type- and stimulus-specific differences in signal transduction pathways: 1) n-formyl-methionyl-leucyl-phenylalanine (FMLP)/cytochalasin B-induced oxidative burst is several-fold higher in granulocytes than in monocytes although the calcium fluxes have similar amplitudes in the two cell types; 2) stimulus-induced calcium fluxes in granulocytes are mainly due to release from intracellular stores, whereas monocytes mobilize calcium mainly by influx from the medium; 3) the FMLP/cytochalasin B-induced calcium flux in monocytes is less sensitive to the G-protein inhibitor pertussis toxin than the flux in granulocytes; 4) in contrast to FMLP/cytochalasin B, the protein kinase C activator phorbol myristate acetate (PMA) induces an oxidative burst that is not preceded by a cytoplasmic calcium flux; 5) the PMA-induced oxidative burst can be triggered in monocytes and granulocytes that are depleted of intracellular calcium ions, whereas that induced by FMLP/cytochalasin B can not; 6) the G-protein inhibitor pertussis toxin blocks an early event in the signal transduction pathway of FMLP/cytochalasin B, as shown by inhibition of both calcium fluxes and oxidative burst; and 7) 100 nM of the protein kinase inhibitor staurosporine blocks the FMLP/cytochalasin B-induced respiratory burst by interfering with a step downstream to cytoplasmic calcium fluxes, whereas only 10-20 nM is necessary to block PMA-induced oxidative burst.  相似文献   

6.
We have investigated the mechanisms of transmembrane signalling implicated in the activation of the respiratory burst of adherent neutrophils by tumor necrosis factor-alpha/cachectin (TNF). The activation of the respiratory burst by TNF is insensitive to pertussis toxin and weakly sensitive to protein kinase C inhibitors. Cytochalasin B and dibutyryl cyclic AMP have an inhibitory effect. The activation of the respiratory burst by TNF takes place in the absence of formation of 3H-inositol phosphates, 32P-phosphatidic acid, and 3H-arachidonic acid. These results demonstrate that the activation of the respiratory burst by an endogenous, physiologic stimulus can be independent of the formation of messengers derived from hydrolysis of phosphoinositides.  相似文献   

7.
Pretreatment with recombinant human granulocyte CSF (G-CSF) protected mice in two different models of septic shock. Intravenous injection of 250 micrograms/kg G-CSF to mice prevented lethality induced by 5 mg/kg LPS. Injection of 50 micrograms/kg G-CSF protected galactosamine-sensitized mice against LPS-induced hepatitis. In either case, this protection was accompanied by a suppression of LPS-induced serum TNF activity. In contrast, when galactosamine-sensitized mice were pretreated with 50 micrograms/kg murine recombinant granulocyte/macrophage CSF instead of G-CSF and subsequently challenged with LPS, serum TNF activity was significantly enhanced and mortality was increased. The suppressive effect of G-CSF on LPS-induced TNF production was also demonstrated in rats. In vivo, no TNF was detectable in the blood of LPS-treated rats, which had been pretreated with G-CSF. Ex vivo, alveolar macrophages, bone marrow macrophages, Kupffer cells, or peritoneal macrophages prepared from G-CSF-treated rats produced significantly less TNF upon stimulation with LPS than corresponding populations from control rats. However, when these macrophage populations were incubated with G-CSF in vitro, LPS-induced TNF production was unaffected. These data suggest that the G-CSF-mediated suppression of TNF production is not a direct effect of G-CSF on macrophages. To examine whether, independent of the protection against LPS, G-CSF treatment still activated neutrophils, it was demonstrated that granulocytes from G-CSF-treated rats were primed for PMA-induced oxidative burst and for ionophore/arachidonic acid-stimulated lipoxygenase product formation. The experiments of this study support the notion that G-CSF is a negative feedback signal for macrophage-derived TNF-alpha production during Gram-negative sepsis.  相似文献   

8.
The roles of calmodulin and protein kinase C in the activation of the human neutrophil respiratory burst were characterized pharmacologically. The protein kinase C inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and N-(2-aminoethyl)-5-isoquinolinesulfonamide (H-9) did not inhibit superoxide anion generation by neutrophils stimulated for 30 minutes with N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) or 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). However, H-7 did depress superoxide production during the first 5 minutes following stimulation. In contrast, the specific calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and the dual calmodulin antagonist/protein kinase C inhibitor trifluoperazine (TFP) were potent inhibitors of the response throughout the 30 minute incubation. Stimulation of neutrophils with submaximal doses of FMLP or PMA failed to promote inhibition of the respiratory burst by H-7 or H-9, but did stimulate a respiratory burst response which was not inhibited by TFP or W-7. These results suggest that while protein kinase C may play a role in the initiation of the respiratory burst response, propagation of the response is dependent on calmodulin-dependent processes. The inability of TFP and W-7 to inhibit superoxide anion generation in response to submaximal stimulatory doses of FMLP or PMA suggests that calmodulin-independent processes may also be involved in activation of the respiratory burst.  相似文献   

9.
The effects of adenosine agonists on human neutrophil function   总被引:7,自引:0,他引:7  
Adenosine is a potent physiologic substance with a variety of biologic activities. Many of the effects of adenosine appear to be mediated by two populations of cell-surface adenosine receptors (A1 and A2). We have examined the effects of several adenosine receptor agonists on human neutrophils stimulated with the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). The results indicate that both superoxide anion generation and degranulation (as assessed by lysozyme release) are inhibited. Inhibition correlated most strongly with A2 receptor affinity for both parameters and was reversible by the adenosine receptor antagonist 8-phenyltheophylline. Because toxic oxygen metabolites and degradative enzymes are implicated in a variety of inflammatory disorders, adenosine agonists may be useful probes to help expand our knowledge of the role of these mediators in human disease.  相似文献   

10.
BACKGROUND: Human polymorphonuclear granulocytes (PMN) are an essential component in the immunological defense network against a variety of harmful pathogens. We have studied the effects of the airborne pollutant sulfite on the calcium metabolism and respiratory burst of these cells simultaneously. METHODS: A flow cytometric method was developed using the fluochromes Indo-1 and DHR-123. This method allowed us to investigate the real-time kinetics of intracellular free calcium and reactive oxygen intermediates in viable cells with a temporal resolution of 1 s over a time course of 17 min. An additional feature was the possibility to discriminate between reacting and nonreacting cells after treatment with defined stimuli, thus gaining additional insight into the behavior of cell subpopulations. RESULTS: We analyzed the effects of sulfite on PMN before and after stimulation with formyl-Met-Leu-Phe (FMLP). Treatment with sulfite alone (0.001-1 mM) caused a small, nontransient increase in intracellular calcium. Preincubation with sulfite reduced the maximal calcium response elicited by FMLP. A significant increase in steady-state calcium levels after stimulation with FMLP was observed after treatment with sulfite in concentrations of 10 and 100 mM. Regarding the respiratory burst, treatment with sulfite alone in concentrations of 0.001-1 mM induced a significant increase in DHR-123-derived fluorescence, whereas concentrations of 5 and 10 mM caused a significant depression of this fluorescence below baseline values. Sulfite caused a maximal twofold increase of DHR-123-derived fluorescence compared with the FMLP response. Similar results were obtained after preincubation with sulfite before treatment with FMLP, showing that the effect of sulfite on the respiratory burst was additive to the FMLP response. Regarding the fractions of responding cells, treatment with sulfite up to 1 mM induced a concentration-dependent increase of burst-reactive PMN, whereas preincubation before stimulation with FMLP showed no correlation between sulfite concentration and fraction of burst-reacting cells. CONCLUSIONS: By simultaneous registration of [Ca(2+)](i) and [H(2)O(2)](i) of PMN after treatment with FMLP and sulfite, the essential responses were already observed within a short time interval (15 min). Striking differences were found in the response of calcium as second messenger and respiratory burst in PMN treated with sulfite. Until a critical concentration (0. 5-1 mM), sulfite caused a concentration-dependent increase of [H(2)O(2)](i), in addition to the FMLP-induced response. The [Ca(2+)](i) changes induced by sulfite alone, however, were found to be small and showed no correlation with the respiratory burst response.  相似文献   

11.
Our previous study (Am J Physiol Heart Circ Physiol 288: H1331-H1338, 2005) demonstrated that TNF-alpha induced significant leukocyte adhesion without causing increases in microvessel permeability, and that formyl-Met-Leu-Phe-OH (fMLP)-stimulated neutrophils in the absence of adhesion increased microvessel permeability via released reactive oxygen species (ROS). The objective of our present study is to investigate the mechanisms that regulate neutrophil respiratory burst and the roles of fMLP-stimulated ROS release from adherent leukocytes in microvessel permeability. A technique that combines single-microvessel perfusion with autologous blood perfusion was employed in venular microvessels of rat mesenteries. Leukocyte adhesion was induced by systemic application of TNF-alpha. Microvessel permeability was assessed by measuring hydraulic conductivity (L(p)). The 2-h autologous blood perfusion after TNF-alpha application increased leukocyte adhesion from 1.2 +/- 0.2 to 13.3 +/- 1.6 per 100 microm of vessel length without causing increases in L(p). When fMLP (10 microM) was applied to either perfusate (n = 5) or superfusate (n = 8) in the presence of adherent leukocytes, L(p) transiently increased to 4.9 +/- 0.9 and 4.4 +/- 0.3 times the control value, respectively. Application of superoxide dismutase or an iron chelator, deferoxamine mesylate, after fMLP application prevented or attenuated the L(p) increase. Chemiluminescence measurements in isolated neutrophils demonstrated that TNF-alpha alone did not induce ROS release but that preexposure of neutrophils to TNF-alpha in vivo or in vitro potentiated fMLP-stimulated ROS release. These results suggest a priming role of TNF-alpha in fMLP-stimulated neutrophil respiratory burst and indicate that the released ROS play a key role in leukocyte-mediated permeability increases during acute inflammation.  相似文献   

12.
The results reported here show that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) and concanavalin A (Con A) may occur with a stimulus response coupling sequence that bypasses the activation of phosphoinositide hydrolysis, monitored as accumulation of inositol phosphates and glycerophosphoinositol, and the increase in [Ca2+]i. In fact: in Ca2+-depleted neutrophils FMLP and Con A do not induce the respiratory burst and the activation of phosphoinositide hydrolysis. The addition of Ca2+ restores both the respiratory and the phosphoinositide responses; the double treatment of Ca2+-depleted neutrophils with FMLP and Con A in sequence, before FMLP and then Con A and vice versa, or simultaneously, restores the capacity to respond to the second stimulus with the respiratory burst but not with the activation of phosphoinositide hydrolysis. These findings suggest that, for the activation of the NADPH oxidase by FMLP and by Con A: the transduction pathway including the stimulation of phosphoinositide turnover, the Ca2+ changes and the activity of the protein kinase C is not required, or is not the unique, and one stimulus may trigger more than one transduction pathway. Possible transduction pathways are discussed.  相似文献   

13.
A mouse IgM mAb termed P1E3 was raised against resting human peripheral blood neutrophils and has been shown to recognize a cell-surface Ag with an apparent molecular mass of 155 kDa, as assessed by immunoprecipitation analysis. In addition to the main 155-kDa protein, an additional band of about 210 kDa was also recognized by P1E3 in Western blot analysis. Sequential immunoprecipitation assays showed that the Ag recognized by P1E3 differed from the CD29 and CD45 Ag. However, sequential immunoprecipitation assays carried out with two distinct anti-CD15 mAb and P1E3 showed that P1E3 reacted with CD15 or with a CD15-like Ag. P1E3 stained strongly resting human peripheral blood neutrophils, hardly reacted with peripheral blood monocytes and did not react with PBL and platelets, as assessed by immunofluorescence flow cytometry. P1E3 inhibited the respiratory burst induced by PMA or FMLP, but not the oxidative response induced by Con A or the calcium ionophores A23187 or ionomycin. Furthermore, P1E3 inhibited the activation of the Na+/H+ antiporter in response to PMA or FMLP and the phosphorylation of a protein of about 50 kDa in response to PMA. However, preincubation of neutrophils with P1E3 did not affect the increase in cytosolic free calcium concentration induced by FMLP. These data suggest that the Ag recognized by P1E3 may play a role in modulating the activation of the respiratory burst induced by PMA or FMLP, and that P1E3 seems to affect protein kinase C-mediated signal transduction mechanisms coupled to the induction of the respiratory burst.  相似文献   

14.
At inflammatory sites neutrophils are stimulated to produce a variety of toxic agents, yet rarely harm the endothelium across which they migrate. We have recently found that endothelium releases adenosine which, acting via receptors on the surface of human neutrophils, inhibits generation of toxic metabolites by stimulated neutrophils but, paradoxically, promotes chemotaxis. Agents which diminish plasma membrane viscosity affect neutrophil function similarly, possibly by modulating chemoattractant receptor number or affinity. We therefore determined whether adenosine receptor agonists modulate neutrophil function by decreasing membrane viscosity and/or changing the affinity of chemoattractant (N-fMet-Leu-Phe, FMLP) receptors. Surprisingly, 5'-(N-ethylcarboxamido)adenosine (NECA, 10 microM), the most potent agonist at neutrophil adenosine receptors, increased plasma membrane viscosity, as measured by fluorescence anisotropy of the plasma membrane specific probe 1-(4-trimethylaminophenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH), in unstimulated neutrophils from a mean microviscosity of 1.67 +/- 0.02 (S.E.) to 1.80 +/- 0.02 (p less than 0.001) while inosine (10 microM), a poor adenosine receptor agonist, had no effect (1.73 +/- 0.04, p = n.s. vs. control, p less than 0.01 vs. NECA). Adenosine receptor agonists increased plasma membrane viscosity in neutrophils with the same order of potency previously seen for inhibition of superoxide anion generation and enhancement of chemotaxis (NECA greater than adenosine = N6-phenylisopropyladenosine). The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline reversed the effect of NECA on plasma membrane viscosity. Unlike other agents which modulate plasma membrane viscosity, NECA (10 microM) did not significantly change the number or affinity of [3H]FMLP binding sites on neutrophils. In contrast to the hypothesis of Yuli et al. these results indicate that occupancy of adenosine receptors on neutrophils increases plasma membrane viscosity without affecting chemoattractant receptor display.  相似文献   

15.
After interaction with so-called priming agents, the respiratory burst in human granulocytes does not become activated, but is enhanced upon subsequent stimulation with the chemoattractant FMLP. Investigating the mechanism of the priming reaction, we found that a transient rise in the cytosolic free calcium concentration [( Ca2+]i) suffices to irreversibly prime human granulocytes. Thus, platelet-activating factor (PAF) induced a transient increase in [Ca2+]i and primed the cells to an enhanced respiratory burst upon subsequent interaction with FMLP. Artificially, the transient rise in [Ca2+]i was mimicked by addition and subsequent removal of the Ca2+ ionophore ionomycin; this treatment too, primed the respiratory burst of the granulocytes. The priming induced by ionomycin was completely abolished when [Ca2+]i changes were buffered during exposure of the cells to the ionophore. The priming induced by PAF was only partially inhibited under [Ca2+]i-buffering conditions during priming, indicating that multiple pathways exist in the priming of granulocytes by PAF.  相似文献   

16.
The concept that T lymphocytes regulate neutrophil function has an important implication in the understanding of the role of these cells in immunity against infection and in inflammatory diseases, but evidence for this concept is primarily derived from the effects of lymphokines on neutrophils. We now present evidence to show that living or paraformaldehyde-fixed mitogen-activated T lymphocytes, as well as an activated T cell line (HUT-78), induce by cell-cell contact, an oxygen-dependent respiratory burst measured by both the lucigenin-dependent chemiluminescence assay and superoxide production. Neutrophils reacted with purified human T lymphocytes which had been activated by culture in the presence of PHA and PMA for 72 h showed a marked and significant respiratory burst compared with neutrophils treated with T lymphocytes cultured in the absence of these mitogens. Similar results were observed with the paraformaldehyde-fixed T cell line (HUT-78). The ability to stimulate neutrophils required intact paraformaldehyde-fixed T cells, and neutrophil stimulation failed to occur if the T cells and neutrophils were separated by membrane filters. mAb to TNF-alpha, and TNF-beta blocked the ability of rTNF-alpha and TNF-beta to stimulate neutrophils but did not block the neutrophil response induced by activated T cells. Pretreatment of neutrophils with the activated T lymphocytes enhanced the response to the tripeptide, FMLP. It is therefore conceivable that activated T lymphocytes attracted at sites of inflammation influence neutrophil activity by direct plasma membrane interaction which clearly represents an efficient microbial defence mechanism, minimizing tissue damage during inflammation.  相似文献   

17.
Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (Ie) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase Ie. In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 μM), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.  相似文献   

18.
It is widely accepted that the activation of the NADPH oxidase of phagocytes is linked to the stimulation of protein kinase C by diacylglycerol formed by hydrolysis of phospholipids. The main source would be choline containing phospholipid via phospholipase D and phosphatidate phosphohydrolase. This paper presents a condition where the activation of the respiratory burst by FMLP correlates with the formation of phosphatidic acid, via phospholipase D, and not with that of diacylglycerol. In fact: 1) in neutrophils treated with propranolol, an inhibitor of phosphatidate phosphohydrolase, FMLP plus cytochalasin B induces a respiratory burst associated with a stimulation of phospholipase D, formation of phosphatidic acid and complete inhibition of that of diacylglycerol. 2) The respiratory burst by FMLP plus cytochalasin B lasts a few minutes and may be restimulated by propranolol which induces an accumulation of phosphatidic acid. 3) In neutrophils stimulated by FMLP in the absence of cytochalasin B propranolol causes an accumulation of phosphatidic acid and a marked enhancement of the respiratory burst without formation of diacylglycerol. 4) The inhibition of the formation of phosphatidic acid via phospholipase D by butanol inhibits the respiratory burst by FMLP.  相似文献   

19.
Cis-unsaturated free fatty acids (FFA) at concentrations between 10 and 30 microM suppressed the superoxide respiratory burst induced in human neutrophils by the chemotactic peptide, N-formylmethionyl-leucyl-phenylalanine (FMLP). Corresponding trans-isomers had a reduced efficacy while saturated FFA were inert. The effects of unsaturated FFA were maximally achieved after several min of preincubation with cells and reversed upon washing. Increased concentrations of Ca2+ in the medium also relieved the inhibition. Unsaturated FFA were equally effective in dampening the respiratory burst induced by fluoride ions but less so with bursts elicited by 9 nM phorbol myristate acetate (PMA). Moreover reactions triggered by higher concentrations (e.g., 100 nM) of PMA were resistant to the effects of FFA. Radioimmunoassays showed that unsaturated FFA directly elevated intracellular cyclic adenosine monophosphate (cAMP) by severalfold above basal levels. It is suggested that inhibition is brought about by unsaturated FFA perturbation of the neutrophil membrane structure, perhaps with an independent contribution from a cAMP-dependent mechanism.  相似文献   

20.
Leukocytes have been shown to play an important role in the development of tissue injury after ischemia and reperfusion (I/R). In the present study, the effects of tourniquet-ischemia on induction of DNA damage in peripheral leukocytes and on respiratory burst of neutrophils in humans were examined. The DNA damage was measured as increased migration of DNA using the single-cell gel-electrophoresis technique (comet assay). Intracellular production of reactive oxygen species by neutrophils was measured flow-cytometrically using dihydrorhodamine 123 as indicator. Postischemic, significantly increased migration of DNA was found in leukocytes of 20 patients (tourniquet-ischemia of the lower limb for 65-130 min, anterior-cruciate-ligament-reconstruction) and in 10 experiments (1 volunteer, repeated tourniquet-ischemia of the upper limb for 60 min, no operation). DNA effects were most pronounced 5-30 min after tourniquet release, and then declined over a 2 h period, but did not return to preischemic baseline values. A similar time course showed the oxidative status of unstimulated granulocytes during reperfusion. Simultaneously, opposing changes were measured in formyl peptide (f-MLP)- or phorbol ester (PMA)-stimulated granulocytes, which showed a significantly declined respiratory burst reaction after tourniquet-release indicating preactivation of neutrophils by IR. Our data suggest that IR induces genotoxic effects in human leukocytes presumably in response to oxidative stress during reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号