首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Through unexpected circumstances, I went to Lambaréné, in Gabon, to be Dr. Albert Schweitzer's surgeon for 2 months, November and December of 1960.This diary I can honestly say I never thought would become public. The years have passed; I am now 77. I realize that not many of those who served in a medical capacity at his hospital are still alive and not everyone will share his or her experiences.I want to make clear that I was with Dr. Schweitzer only 2 months. I would not want anyone to think that I played a strategic role at the hospital. I did not, but I helped as best I could.Although I have traveled throughout the world and have been a surgeon in many out-of-the-way places, I have not returned to Lambaréné. The reason, I confess, is that I wanted it to remain in my mind as it was. For Dr. Schweitzer and those who served there, his hospital was a way of life. It was a world of its own and, though small, it came into being because of the arching ideals and unflagging dedication of a remarkable man. His example should inspire us to enlarge our personal horizons, not just to recognize the less fortunate but to act without delay on their behalf. For each of us, there is an Ogowe waiting to be crossed.  相似文献   

2.
Having been selected to be among the exquisitely talented scientists who won the Sandra K. Masur Senior Leadership Award is a tremendous honor. I would like to take this opportunity to make the case for a conviction of mine that I think many will consider outdated. I am convinced that we need more curiosity-driven basic research aimed at understanding the principles governing life. The reasons are simple: 1) we need to learn more about the world around us; and 2) a robust and diverse basic research enterprise will bring ideas and approaches essential for developing new medicines and improving the lives of humankind.When I was a graduate student, curiosity-driven basic research ruled. Studying mating-type switching in budding yeast, for example, was exciting because it was an interesting problem: How can you make two different cells from a single cell in the absence of any external cues? We did not have to justify why it is important to study what many would now consider a baroque question. Scientists and funding agencies alike agreed that this was an exciting biological problem that needed to be solved. I am certain that all scientists of my generation can come up with similar examples.Open in a separate windowAngelika AmonSince the time I was a graduate student, the field of biological research has experienced a revolution. We can now determine the genetic makeup of every species in a week or so and have an unprecedented ability to manipulate any genome. This revolution has led to a sense that we understand the principles governing life and that it is now time to apply this knowledge to cure diseases and make the world a better place. While applying knowledge to improve lives and treat diseases is certainly a worthwhile endeavor, it is important to realize that we are far from having a mechanistic understanding of even the basic principles of biology. What the genomic revolution brought us are lists, some better than others. We now know how many coding genes define a given species and how many protein kinases, GTPases, and so forth there are in the various genomes we sequenced. This knowledge, however, does not even scratch the surface of understanding their function. When I browse the Saccharomyces cerevisiae genome database (my second-favorite website), I am still amazed how many genes there are that have not even been given a name.To me the most important achievement the new genome-sequencing and genome-editing technologies brought us is that nearly every organism can be a model organism now. We can study and manipulate the processes that most fascinate us in the organisms in which they occur, with the exception, of course, of humans. Thus, I believe that the golden era of basic biological research is not behind us but in front of us, and we need more people who will take advantage of the tools that have been developed in the past three decades. I am therefore hoping that many young people will chose a career in basic research and find an exciting question to study. The more of us there are, the more knowledge we will acquire, and the higher the likelihood we will discover something amazing and important. There is so much interesting biology out there that we should strive to understand. Some of my favorite unanswered questions are: What are the biological principles underlying symbiosis and how did it evolve? Why is sleep essential? Why do plants, despite an enormous regenerative potential, never die of cancer? Why do brown bears, despite inactivity, obesity, and high levels of cholesterol, exhibit no signs of atherosclerosis? How do sharks continuously produce teeth?One could, of course, argue that the knowledge we have accumulated over the past 50 years provides a reasonable framework, and it is now time to leave basic science and model organisms behind and focus on what matters—curing diseases, developing methods to produce energy, cleaning up the oceans, preventing global warming, building biological computers, designing organisms, or engineering whatever the current buzz is about. Like David Botstein, who eloquently discussed the importance of basic research in these pages in 2012 (Botstein, 2012 ), I believe that the notion that we already know enough is wrong and the current application-centric view of biology is misguided. Experience has taught us over and over that we cannot predict where the next important breakthrough will be emerge. Many of the discoveries that we consider groundbreaking and that have brought us new medicines or improved our lives in other ways are the result of curiosity-driven basic research. My favorite example is the discovery of penicillin. Alexander Fleming, through the careful study of his (contaminated) bacterial plates, enabled humankind to escape natural selection. More recent success stories such as new cures for hepatitis C, the human papillomavirus vaccine, the HIV-containment regimens, or treatments for BCR-ABL induced chronic myelogenous leukemia have also only been possible because of decades of basic research in model organisms that taught us the principles of life and enabled us to acquire the methodologies critical to develop these treatments. Although work from my own lab on the causes and consequences of chromosome mis-segregation in budding yeast has not led to the development of new treatments, it has taught us a lot about how an imbalanced karyotype, a hallmark of cancer, affects the physiology of cancer cells and creates vulnerabilities in cancer cells that could represent new therapeutic targets.These are but a few examples for why it is important that we scientists must dedicate ourselves to the pursuit of basic knowledge and why we as a society must make funding basic research a priority. Achieving the latter requires that we scientists tell the public about the importance of what we are doing and explain the potential implications of basic research for human health. At the same time, it will be important to manage expectations. We must explain that not every research project will lead to the development of new medicines and that we cannot predict where the next big breakthroughs will materialize. We must further make it clear that this means we have to fund a broad range of basic research at a healthy level. Perhaps a website that collects examples of how basic research has led to breakthroughs in medicine could serve as a showcase for such success stories, bringing the importance of what we do to the public.While conducting research to improve the lives of others is certainly a worthy motivation, it is not the main reason why I get up very early every morning to go to the lab. To me, gaining an understanding of a basic principle in the purest Faustian terms is what I find most rewarding and exciting. Designing and conducting experiments, pondering the results, and developing hypotheses as to how something may work is most exciting, the idea that I, or nowadays the people in my lab, may be (hopefully) the first to discover a new aspect of biology is the best feeling. It is these rare eureka moments, when you first realize how a process works or when you discover something that opens up a new research direction, that make up for all the woes and frustrations that come with being an experimental scientist in an expensive discipline.For me, having a career in curiosity-driven basic research has been immensely rewarding. It is my hope that basic research remains one of the pillars of the American scientific enterprise, attracting the brightest young minds for generations to come. We as a community can help to make this a reality by telling people what we do and highlighting the importance of our work to their lives.  相似文献   

3.
Dr. Manners     
Good manners make a difference—in science and elsewhere. This includes our social media etiquette as researchers. Subject Categories: S&S: History & Philosophy of Science, Methods & Resources, S&S: Ethics

Elbows off the table, please. Don’t chew with your mouth open. Don’t blow your nose at the table. Don’t put your feet up on the chair or table. And please, do not yuck my yum. These are basic table manners that have come up at some of our lab meals, and I have often wondered if it was my job to teach my trainees social graces. A good fellow scientist and friend of mine once told me it was absolutely our place as mentors to teach our trainees not only how to do science well, but also how to be well‐mannered humans. While these Emily Post‐approved table manners might seem old‐fashioned (I’m guessing some readers will have to look up Emily Post), I strongly believe they still hold a place in modern society; being in good company never goes out of style.Speaking of modern society: upon encouragement by several of my scientist friends, I joined Twitter in 2016. My motivation was mainly to hear about pre‐prints and publications, conference announcements and relevant news, science or otherwise. I also follow people who just make me laugh (I highly recommend @ConanOBrien or @dog_rates). I (re)tweet job openings, conference announcements, and interesting new data. Occasionally, I post photos from conferences, or random science‐related art. I also appreciate the sense of community that social media brings to the table. However, social media is a venue where I have also seen manners go to die. Rapidly.It is really shocking to read what some people feel perfectly comfortable tweeting. While most of us can agree that foul language and highly offensive opinions are generally considered distasteful, there are other, subtler but nonetheless equally—if not more—cringe‐worthy offenses online when I am fairly certain these people would never utter such words in real life. In the era of pandemic, the existence of people tweeting about not being able to eat at their favorite restaurant or travel to some destination holiday because of lockdown shows an egregious lack of self‐awareness. Sure it sucks to cancel a wedding due to COVID‐19, but do you need to moan to your followers—most of whom are likely total strangers—about it while other people have lost their jobs? If I had a nickel for every first‐world complaint I have seen on Twitter, I’d have retired a long time ago; although to be honest, I would do science for free. However, these examples pale in comparison with another type of tweeter: Reader, I submit to you, “the Humblebragger.”From the MacMillan Buzzword dictionary (via Google): a humblebrag is “a statement in which you pretend to be modest but which you are really using as a way of telling people about your success or achievements.” I would further translate this definition to indicate that humblebraggers are starved for attention. After joining Twitter, I quickly found many people using social media to announce how “humble and honored” they are for receiving grant or prize X, Y, or Z. In general, these are junior faculty who have perhaps not acquired the self‐awareness more senior scientists have. Perhaps the most off‐putting posts I have seen are from people who post photos of their NIH application priority scores right after study section, or their Notice of Awards (NOA). When did we ever, before social media, send little notes to each other—let alone to complete strangers—announcing our priority scores or NOAs? (Spoiler: NEVER)Some of you reading this opinion piece might have humblebragged at one or time or another, and might not understand why it is distasteful. Please let me explain. For every person who gets a fundable score, there are dozens more people who do not, and they are sad (I speak from many years of experience). While said fundable‐score person might be by someone we like—and I absolutely, positively wish them well—there are many more people who will feel lousy because they did not get funding from the same review round. When has anyone ever felt good about other people getting something that they, too, desire? I think as children, none of us liked the kid on the playground who ran around with the best new Toy of the Season. As adults, do we feel differently? Along these lines, I have never been a fan of “best poster/talk/abstract” prizes. Trainees should not be striving for these fleeting recognitions and should focus on doing the best science for Science’s sake; I really believe this competition process sets people up for life in a negative way—there, I’ve said it.Can your friends and colleagues tweet about your honors? Sure, why not, and by all means please let your well‐wishers honor you, and do thank them and graciously congratulate your trainees or colleagues for helping you to get there. But to post things yourself? Please. Don’t be surprised if you have been muted by many of your followers.It is notable that many of our most decorated scientists are not on Twitter, or at least never tweet about their accomplishments. I do not recall ever seeing a single Nobel laureate announce how humbled and honored they are about their prize. Of course, I might be wrong, but I am willing to bet the numbers are much lower than what I have observed for junior faculty. True humility will never be demonstrated by announcing your achievements to your social media followers, and I believe humblebragging reveals insecurity more than anything. I hope that many more of us can follow the lead of our top scientists both in creativity, rigor, and social media politeness.  相似文献   

4.
This article presents a review of work that my colleagues and I have been doing during the past 15 years developing a rationale for the diagnosis of attention-deficit/hyperactivity disorder (ADHD) and treatment of ADHD employing EEG biofeedback techniques. The article first briefly reviews the history of research and theory for understanding ADHD and then deals with the development of EEG and event-related potential (ERP) assessment paradigms and treatment protocols for this disorder, including our work and that of others who have replicated our results. Illustrative material from our current research and child case studies is included. Suggestions for future experimental and clinical work in this area are presented and theoretical issues involving the understanding of the neurophysiological and neurological basis of ADHD are discussed.Over the years, many people have been involved both in my laboratory and at Southeastern Biofeedback Institute working with me in developing this area; I wish to acknowledge some of them. They are specifically Dr. Margaret Shouse and Dr. Chris Mann, who have been involved in the initial and recent stages of my research; Ms. Jennifer Samples, who has worked with us in the Institute for many years and has helped us in training many of the children that have benefited from EEG biofeedback. I would especially wish to acknowledge the skill and dedication of Judith O. Lubar, of Southeastern Biofeedback Institute, who has worked with me clinically in terms of developing treatment protocols for ADHD biofeedback and who has trained many of the children who have successfully completed EEG Biofeedback. I would like to acknowledge the generous help of the Lexicor Corporation of Boulder, Colorado who have provided support and instrumentation for recent studies in this area. Mr. Rod Bunn and Mr. Robert Muenchen, who have provided computer support, programming, and statistical assistance in evaluating data in various studies, are gratefully acknowledged. Some of this research was supported by a grant under the ESEA Title IV-C Program for the handicapped. I also gratefully acknowledge Children's Hospital of Knoxville, TN, who have provided essential contract support for our laboratory at the University of Tennessee.  相似文献   

5.
I believe the evidence will show that the science we conduct and discoveries we make are influenced by our cultural experience, whether they be positive, negative, or neutral. I grew up as a person of color in the United States of America, faced with challenges that many had as members of an underrepresented minority group. I write here about some of the lessons I have learned that have allowed me to survive as an underrepresented minority ­scientist in a majority environment.  相似文献   

6.
Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. 1 , 2 As examples, the tapeworm life cycle is dependent on our consumption of meat,3 the divergence of body and head lice may have been subsequent to the development of clothing, 4 , 5 and malaria hyperendemicity may be associated with agriculture. 6 Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology.  相似文献   

7.
Finding out why we have beliefs and desires is important for a thorough understanding of the nature of our minds (and those of other animals). It is therefore unsurprising that several accounts have been presented that are meant to answer this question. At least in the philosophical literature, the most widely accepted of these are due to Kim Sterelny and Peter Godfrey-Smith, who argue that beliefs and desires evolved due to their enabling us to be behaviourally flexible in a way that reflexes do not—which, they claim, is beneficial in epistemically complex environments. However, as I try to make clear in this paper, upon closer consideration, this kind of account turns out to be theoretically implausible. In the main, this is because it fails to give due credit to the powers of reflex-driven organisms, which can in fact be just as flexible in their behaviour as ones that are belief/desire-driven. In order to improve on this account, I therefore propose that beliefs and desires evolved, not due to their enabling us to do something completely different from what reflexive organisms can do, but rather due to their enabling us to do the same things better. Specifically, I argue that beliefs and desires evolved for making the generation of behaviour more efficient, since they can simplify the necessary cognitive labour considerably. I end by considering various implications of this account.  相似文献   

8.
Recent elucidation of regulatory mechanisms of eu- and pheomelanogenesis has led us towards an exciting new era of melanogenesis control. I will chiefly address our progress on inhibitory control of melanogenesis from the macromolecular level to human skin colour. In the past, the exploration and search for skin depigmenting agents has been focussed on and initiated from substances which can suppress isolated tyrosinase in vitro. Now, as I have classified below, many new melanogenic inhibitors have been discovered which, in spite of their non-suppressive effect on isolated naked tyrosinase, suppress melanin formation in the living pigment cell in vitro as well as in the natural world. I will also discuss a recently found unique disorder: unilateral suppression of mixed melanogenesis.  相似文献   

9.
Despite significant advances in our understanding of the immune response to persistent viruses like human T-cell lymphotropic virus type I (HTLV-I), many important questions remain unanswered. Mathematical modelling enables us to interpret and synthesise diverse experimental data in new ways and thus can contribute to our understanding. Here, we review recent advances in mathematical modelling of HTLV-I infection and illustrate how mathematics has enabled us to identify factors that determine an individual's viral burden and risk of developing HTLV-I-associated diseases.  相似文献   

10.
Joel S. Brown 《Oikos》2001,94(1):6-16
Ngongas provide a metaphor for some of the opportunities and challenges facing the science of ecology and evolution. Ngongas, the traditional healers of the Shona culture, Zimbabwe, fail in the delivery of quality health by today's standards. Their outdated worldview makes most health related issues seem more complicated and more multi-factorial than when viewed through the worldviews of modern medicine. With the wrong worldview, one can work very hard, be very bright and dedicated, and still be ineffective. With the right worldview, one can work much less hard and still be extremely effective. As ecologists, we should be opinionated and possess clearly articulated worldviews for filtering and interpreting information. As ecologists we are also a bit like ngongas – we often fail to provide answers for society's ecological questions and problems, and we excuse ourselves with a belief that ecological systems are too complex and have too many factors. Unlike ngongas, this invites us to pay a lot of attention to promoting and assessing competing worldviews. We should be open-minded to the anomalies in our worldview and the successes of alternative viewpoints. As an admitted ecological ngonga, I discuss the worldview I use in my own research: the Optimization Research Program, a Darwinian research program that uses game theory to conceptualize and understand ecological systems. I use it illustrate how worldviews can synthesize disparate ideas. (I use kin selection and reciprocal altruism as examples.) I use it to show how new ideas and predictions can be generated. (I use root competition in plants and the possibility that increased crop yield may be forthcoming from knowledge of this game.)  相似文献   

11.
12.
13.
The historical forces that have contributed to our current views of neurobehavioral development (and thus to the fields of developmental psychobiology and neuroethology) are many and varied. Although similar statements might be made about almost any field of science, it is in particular true of this field, which represents a kind of mongrel discipline derived from at least three major sources (psychology, embryology, and neuroscience) and several more minor ones (including developmental psychology and psychiatry, psychoanalysis, education, zoology, ethology, and sociology). Although I attempt to demonstrate here how each of these sources may have influenced the emergence of a unified field of developmental psychobiology or developmental neuroethology, because the present article represents the first attempt of which I am aware to trace the history of these fields I am certain that there is considerable room for improvement, correction, and revision of the views expressed here. Accordingly, I consider this inaugural effort a kind of reconnaissance intended to trace a necessarily imperfect historic path for others to follow and improve upon. In the final analysis, I will be satisfied if this article only serves to underscore two related points: first is the value derived from historical studies of contemporary issues in development, and the second concerns the extent to which our current ideas and concepts about neurobehavioral development, ideas often considered new and contemporary, were already well known to those who came before us. The first point underscores the arguments expressed in the Introduction that the present must always be reconciled with the past, for the past is never entirely past. The second point returns full circle to an important thought expressed in the opening quotation to this article, namely, that even though our historic predecessors lacked much of the empirical facts available to us they were nonetheless able to attain a surprisingly deep understanding of neurobehavioral ontogeny.  相似文献   

14.
I bought a robotic vacuum cleaner this summer and set it to work. Although my initial expectations were not high, my robot (christened Buddy) finished its cleaning cycle, and then insistently demanded that I empty its dust collection box. As I took the box out, my jaw dropped. I live in a modern house, we don't have pets, and I like to think that I keep it reasonably dust free. But, there was much dust in that box. And when I ran it again 2 days later, the same thing happened. And indeed, every 2 days, Buddy dutifully goes to work, and sucks up a similarly impressive quantity. It's remarkable, and naturally begs the question of where it all comes from? Some is externally derived, entering the house with us or through open windows. Some is clearly fibres shed from clothes, furniture etc. Then there's the skin cells and hair we shed. But at least part is derived from the host of smaller organisms that live in and around our homes, many of which are arthropods (Butte & Heinzow 2002 ). I suspect almost all readers are aware that some smaller animals live in our houses – even those who live in the modern urban houses will have occasionally encountered the odd drosophila, silverfish or spider. But I suspect that prior to reading Madden et al.'s article in this issue of Molecular Ecology (Madden et al. 2017 ), few of you will have appreciated the true diversity, which, it turns out, is huge.  相似文献   

15.
Metacognition concerns the processes by which we monitor and control our own cognitive processes. It can also be applied to others, in which case it is known as mentalizing. Both kinds of metacognition have implicit and explicit forms, where implicit means automatic and without awareness. Implicit metacognition enables us to adopt a we-mode, through which we automatically take account of the knowledge and intentions of others. Adoption of this mode enhances joint action. Explicit metacognition enables us to reflect on and justify our behaviour to others. However, access to the underlying processes is very limited for both self and others and our reports on our own and others' intentions can be very inaccurate. On the other hand, recent experiments have shown that, through discussions of our perceptual experiences with others, we can detect sensory signals more accurately, even in the absence of objective feedback. Through our willingness to discuss with others the reasons for our actions and perceptions, we overcome our lack of direct access to the underlying cognitive processes. This creates the potential for us to build more accurate accounts of the world and of ourselves. I suggest, therefore, that explicit metacognition is a uniquely human ability that has evolved through its enhancement of collaborative decision-making.  相似文献   

16.
This paper distinguishes two categories of questions that the Price equation can help us answer. The two different types of questions require two different disciplines that are related, but nonetheless move in opposite directions. These disciplines are probability theory on the one hand and statistical inference on the other. In the literature on the Price equation this distinction is not made. As a result of this, questions that require a probability model are regularly approached with statistical tools. In this paper, we examine the possibilities of the Price equation for answering questions of either type. By spending extra attention on mathematical formalities, we avoid the two disciplines to get mixed up. After that, we look at some examples, both from kin selection and from group selection, that show how the inappropriate use of statistical terminology can put us on the wrong track. Statements that are 'derived' with the help of the Price equation are, therefore, in many cases not the answers they seem to be. Going through the derivations in reverse can, however, be helpful as a guide how to build proper (probabilistic) models that do give answers.  相似文献   

17.
The c-myc is a proto-oncogene that manifests aberrant expression at high frequencies in most types of human cancer. C-myc gene amplifications are often observed in various cancers as well. Ample studies have also proved that c-myc has a potent oncogenicity, which can be further enhanced by collaborations with other oncogenes such as Bcl-2 and activated Ras. Studies on the collaborations of c-myc with Ras or other genes in oncogenicity have established several basic concepts and have disclosed their underlying mechanisms of tumor biology, including “immortalization” and “transformation”. In many cases, these collaborations may converge at the cyclin D1-CDK4 complex. In the meantime, however, many results from studies on the c-myc, Ras and cyclin D1-CDK4 also challenge these basic concepts of tumor biology and suggest to us that the immortalized status of cells should be emphasized. Stricter criteria and definitions for a malignantly transformed status and a benign status of cells in culture also need to be established to facilitate our study of the mechanisms for tumor formation and to better link up in vitro data with animal results and eventually with human cancer pathology.  相似文献   

18.
Our reliance on our group members has exerted a profound influence over our motivation: successful group functioning requires that we are motivated to interact, and engage, with those around us. In other words, we need to belong. In this article, I explore the developmental origins of our need to belong. I discuss existing evidence that, from early in development, children seek to affiliate with others and to form long-lasting bonds with their group members. Furthermore, when children are deprived of a sense of belonging, it has negative consequences for their well-being. This focus on social motivation enables us to examine why and in what circumstances children engage in particular behaviours. It thus provides an important complement to research on social cognition. In doing so, it opens up important questions for future research and provides a much-needed bridge between developmental and social psychology.  相似文献   

19.
The historical forces that have contributed to our current views of neurobehavioral development (and thus to the fields of developmental psychobiology and neuroethology) are many and varied. Although similar statements might be made about almost any field of science, it is in particular true of this field, which represents a kind of mongrel discipline derived from at least three major sources (psychology, embryology, and neuroscience) and several more minor ones (including developmental psychology and psychiatry, psychoanalysis, education, zoology, ethology, and sociology). Although I attempt to demonstrate here how each of these sources may have influenced the emergence of a unified field of developmental psychobiology or developmental neuroethology, because the present article represents the first attempt of which I am aware to trace the history of these fields I am certain that there is considerable room for improvement, correction, and revision of the views expressed here. Accordingly, I consider this inaugural effort a kind of reconnaissance intended to trace a necessarily imperfect historic path for others to follow and improve upon. In the final analysis, I will be satisfied if this article only serves to underscore two related points: first is the value derived from historical studies of contemporary issues in development, and the second concerns the extent to which our current ideas and concepts about neurobehavioral development, ideas often considered new and contemporary, were already well known to those who came before us. The first point underscores the arguments expressed in the Introduction that the present must always be reconciled with the past, for the past is never entirely past. The second point returns full circle to an important thought expressed in the opening quotation to this article, namely, that even though our historic predecessors lacked much of the empirical facts available to us they were nonetheless able to attain a surprisingly deep understanding of neurobehavioral ontogeny. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
Innovation and creativity are key defining features of human societies. As we face the global challenges of the twenty-first century, they are also facets upon which we must become increasingly reliant. But what makes Homo sapiens so innovative and where does our high innovation propensity come from? Comparative research on innovativeness in non-human animals allows us to peer back through evolutionary time and investigate the ecological factors that drove the evolution of innovativeness, whereas experimental research identifies and manipulates underpinning creative processes. In commenting on the present theme issue, I highlight the controversies that have typified this research field and show how a paradigmatic shift in our thinking about innovativeness will contribute to resolving these tensions. In the past decade, innovativeness has been considered by many as a trait, a direct product of cognition, and a direct target of selection. The evidence I review here suggests that innovativeness will be hereon viewed as one component, or even an emergent property of a larger array of traits, which have evolved to deal with environmental variation. I illustrate how research should capitalize on taxonomic diversity to unravel the full range of psychological processes that underpin innovativeness in non-human animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号