首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A previous paper described the complete amino acid sequences of sarcotoxins IA, IB and IC, which are a group of potent antibacterial proteins with almost identical primary structures produced by Sarcophaga peregrina (fleshfly) larvae [Okada & Natori (1985) J. Biol. Chem. 260, 7174-7177]. The present paper describes the cDNA cloning and complete nucleotide sequencing of a cDNA clone for sarcotoxin IA. The C-terminal amino acid residue of sarcotoxin IA deduced from the nucleotide sequence was glycine, whereas it was found to be arginine by amino acid sequencing of purified sarcotoxin IA. Analysis of the elution profiles on h.p.l.c. of the synthetic derivatives of sarcotoxin IA showed that the C-terminal amino acid residue of authentic sarcotoxin IA is amidated arginine, which is probably produced by enzymic cleavage of terminal glycine.  相似文献   

3.
The extent of insertion of beta-strand s4A into sheet A in intact serpin alpha 1-proteinase inhibitor (alpha 1PI has been probed by peptide annealing experiments [Schulze et al. (1990) Eur. J. Biochem. 194, 51-56]. Twelve synthetic peptides of systematically varied length corresponding in sequence to the unprimed (N-terminal) side of the active site loop were complexed with alpha 1PI. The complexes were then characterized by circular dichroism spectroscopy and tested for inhibitory activity. Four peptides formed complexes which retained inhibitory activity, one of which was nearly as effective as the native protein. Comparison with the three dimensional structures of cleaved alpha 1PI [L?bermann et al. (1984) J. Mol. Biol. 177, 531-556] and plakalbumin [Wright et al. (1990) J. Mol. Biol. 213, 513-528] supports a model in which alpha 1PI requires the insertion of a single residue, Thr345, into sheet A for activity.  相似文献   

4.
Fenton chemistry [Fenton (1894) J. Chem. Soc. 65, 899-910] techniques were employed to identify the residues involved in metal binding located at the active sites of restriction endonucleases. This process uses transition metals to catalytically oxidize the peptide linkage that is in close proximity to the amino acid residues involved in metal ligation. Fe2+ was used as the redox-active transition metal. It was expected that Fe2+ would bind to the endonucleases at the Mg2+-binding site [Liaw et al. (1993) Biochemistry 32, 7999-4003; Ermácora et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 6383-6387; Soundar and Colman (1993) J. Biol. Chem. 268, 5264-5271; Wei et al. (1994) Biochemistry 33, 7931-7936; Ettner et al. (1995) Biochemistry 34, 22-31; Hlavaty and Nowak (1997) Biochemistry 36, 15515-15525). Fe2+-mediated oxidation was successfully performed on TaqI endonulease, suggesting that this approach could be applied to a wide array of endonucleases [Cao and Barany (1998) J. Biol. Chem. 273, 33002-33010]. The restriction endonucleases BamHI, FokI, BglI, BglII, PvuII, SfiI, BssSI, BsoBI, EcoRI, EcoRV, MspI, and HinP1I were subjected to oxidizing conditions in the presence of Fe2+ and ascorbate. All proteins were inactivated upon treatment with Fe2+ and ascorbate. BamHI, FokI, BglI, BglII, PvuII, SfiI, BssSI, and BsoBI were specifically cleaved upon treatment with Fe2+/ascorbate. The site of Fe2+/ascorbate-induced protein cleavage for each enzyme was determined. The Fe2+-mediated oxidative cleavage of BamHI occurs between residues Glu77 and Lys78. Glu77 has been shown by structural and mutational studies to be involved in both metal ligation and catalysis [Newman et al. (1995) Science 269, 656-663; Viadiu and Aggarwal (1998) Nat. Struct. Biol. 5, 910-916; Xu and Schildkraut (1991) J. Biol. Chem. 266, 4425-4429]. The sites of Fe2+/ascorbate-induced cleavage for PvuII, FokI, BglI, and BsoBI agree with the metal-binding sites identified in their corresponding three-dimensional structures or from mutational studies [Cheng et al. (1994) EMBO J. 13, 3297-3935; Wah et al. (1997) Nature 388, 97-100; Newman et al. (1998) EMBO J. 17, 5466-5476; Ruan et al. (1997) Gene 188, 35-39]. The metal-binding residues of BglII, SfiI, and BssSI are proposed based on amino acid sequencing of their Fe2+/ascorbate-generated cleavage fragments. These results suggest that Fenton chemistry may be a useful methodology in identifying amino acids involved in metal binding in endonucleases.  相似文献   

5.
We recently demonstrated, using synthetic peptides modeled on the extension peptide of malate dehydrogenase, that amino acid residues present at the proximal and distal positions relative to the cleavage site are critical determinants for the recognition of substrates by mitochondrial processing peptidase [Niidome et al. (1994) J. Biol. Chem. 269, 24719-24722). While the proximal arginine is unexceptionally located at the -2 position, the position of the distal residue varies among mitochondrial precursor proteins. Between the proximal and distal residues, proline and/or glycine are present in most mitochondrial precursor proteins, and they are considered to play a role in the specific recognition of a substrate by the peptidase. To elucidate the role of the intervening portion, we introduced a non-natural amino acid [2-(2-aminoethoxy)acetic acid] between the distal and proximal residues. We also analyzed the functional elements in the proximal arginine by replacing the residue with various arginine or lysine analogs. The results of kinetic studies indicated that the intervening portion should be flexible for efficient processing, and that the guanidino group of the proximal arginine is recognized by the peptidase through hydrogen and ionic bonds.  相似文献   

6.
Katagiri M  Nakamura M 《IUBMB life》2002,53(2):125-129
It has traditionally been thought that animals can utilize ammonia for amino acid biosynthesis, and that for them some amino acids are nutritionally nonessential. Presumably this idea originates from the notions of Schoenheimer (G. L. Foster et al. [1939] J. Biol. Chem. 127, 319-327) and of Rose (W. C. Rose et al. [1948] J. Biol. Chem. 176, 753-762), which we question for the following reasons. First, Schoenheimer's experiments only showed the incorporation of ammonia into amino acids. This may occur simply as an exchange between ammonia and the alpha-amino group of endogenous amino acids and reflects the enzymatic properties of glutamate dehydrogenase, which is a reversible enzyme. Second, Rose's nutritional experiments were concerned with whether carbon skeletons of particular amino acids can (nonessential) or cannot (essential) be synthesized from common intermediates of carbohydrate metabolism. We propose that mammals, living as they do at the top of the food web, are absolutely dependent directly or indirectly on higher plants and microorganisms for preformed alpha-amino nitrogen per se and that the first joining of C- and N-atoms to make glutamate constitutes a basic anabolic system in nature after the fixation of CO2 and N2.  相似文献   

7.
We have identified a sequencing error in the neutral trehalase-encoding gene NTH1 [Kopp et al., J. Biol. Chem. 268 (1993) 4766-4774]. This error extends the deduced amino acid (aa) sequence at the N terminus by 58 aa. The biological implications of this include the presence of an additional phosphorylation site, which is believed to regulate trehalose hydrolysis.  相似文献   

8.
Catechol 1,2-dioxygenase (pyrocatechase) has been purified to homogeneity from Pseudomonas putida mt-2. Most properties of this enzyme, such as the absorption spectrum, iron content, pH stability, pH optimum, substrate specificity, Km values, and amino acid composition, were similar to those of catechol 1,2-dioxygenase obtained from Pseudomonas arvilla C-1 [Y. Kojima et al. (1967) J. Biol. Chem. 242, 3270-3278]. These two catechol 1,2-dioxygenases were also found, from the results of Ouchterlony double diffusion, to share several antigenic determinants. The molecular weight of the putida enzyme was estimated to be 66,000 and 64,000 by sedimentation equilibrium analysis and Sephadex G-200 gel filtration, respectively. The enzyme gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, corresponding to Mr 32,000. The NH2-terminal sequence, which started with threonine, was determined up to 30 residues by Edman degradation. During the degradation, a single amino acid was released at each step. The NH2-terminal sequence up to 20 residues was identical to that of the beta subunit of the arvilla enzyme, with one exception at step 16, at which arginine was observed instead of glutamine. The COOH-terminal residue was deduced to be arginine on carboxypeptidase A and B digestions and on hydrazinolysis. These results indicate that the putida enzyme consists of two identical subunits, in contrast to the arvilla enzyme which consists of two nonidentical subunits, alpha and beta [C. Nakai et al. (1979) Arch. Biochem. Biophys. 195, 12-22], although these two enzymes have very similar properties.  相似文献   

9.
CK2-dependent phosphorylation of a kinase-specific Hsp90 co-chaperone Cdc37 on a conserved serine residue (Ser13) is essential for the function of Cdc37 [Bandhakavi S. et al. J. Biol. Chem. 278:2829-2836, 2003; Shao J. et al. J. Biol. Chem. 278:38117-38220, 2003; Miyata Y., & Nishida E. Mol. Cell. Biol. 24:4065-4074, 2004]. We have recently produced an anti-[pSer13]-Cdc37 antibody which specifically recognizes Cdc37 that is phosphorylated on Ser 13 [Miyata Y. & Nishida E. FEBS J. 274:5690-5703, 2007]. Here we investigated CK2 activity both in vitro and in cultured cells by using anti-[pSer13]-Cdc37 antibody. Immunoblotting with this antibody showed that heparin and 4,5,6,7-tetrabromobenzotriazole (TBB), known CK2 inhibitors, inhibited in vitro phosphorylation of Cdc37 on Ser13 by CK2 holoenzyme or CK2alpha, confirming the specificity of the antibody to detect CK2 activity. Treatment of cells with TBB resulted in the decrease in the phosphorylation level of endogenous Cdc37 on Ser13, as revealed by anti-[pSer13]-Cdc37, and overexpression of either CK2alpha or CK2beta subunit enhanced the Cdc37 phosphorylation level. While CK2 is suggested to be involved in cell proliferation, mitogenic stimulation of starved cells by fresh serum or insulin-like growth factor-I did not enhance phosphorylation of Cdc37 on Ser13. CK2 inhibitors are known to induce cell apoptosis, suggesting a reverse correlation between cell apoptosis and CK2 activity. However, cellular apoptotic stresses, such as anisomycin treatment and UV irradiation, were found to rather modestly increase phosphorylation of Cdc37 on Ser13. These results show that the anti-[pSer13]-Cdc37 antibody can be a promising new tool to evaluate in vivo CK2 activity.  相似文献   

10.
The 39-kDa DNA polymerase beta (beta-Pol) molecule can be readily converted into two constituent domains by mild proteolysis; these domains are represented in an 8-kDa N-terminal fragment and a 31-kDa C-terminal fragment [Kumar et al. (1990a) J. Biol. Chem. 265, 2124-2131]. Intact beta-Pol is a sequence-nonspecific nucleic acid-interactive protein that binds both double-stranded (ds) and single-stranded (ss) polynucleotides. These two activities appear to be contributed by separate portions of the enzyme, since the 31-kDa domain binds ds DNA but not ss DNA, and conversely, the 8-kDa domain binds ss DNA but not ds DNA [Casas-Finet et al. (1991) J. Biol. Chem. 266, 19618-19625]. Truncation of the 31-kDa domain at the N-terminus with chymotrypsin, to produce a 27-kDa fragment (residues 140-334), eliminated all DNA-binding activity. This suggested that the ds DNA-binding capacity of the 31-kDa domain may be carried in the N-terminal segment of the 31-kDa domain. We used CNBr to prepare a 16-kDa fragment (residues 18-154) that spans the ss DNA-binding region of the 8-kDa domain along with the N-terminal portion of the 31-kDa domain. The purified 16-kDa fragment was found to have both ss and ds polynucleotide-binding capacity. Thermodynamic binding properties for these activities are similar to those of the intact enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A structurally novel, tryptophan-rich antimicrobial tridecapeptide amide, named indolicidin, has recently been purified from bovine neutrophils (Selsted et al. (1992) J. Biol. Chem. 267, 4292-4295). Here we describe the molecular cloning of this endoantibiotic, which is synthesised in bone marrow cells as a 144 amino acid residue precursor. The encoded protein has a predicted mass of 16479 Da and a pI of 6.51. A putative signal peptide of 29 amino acids precedes a 101 residue pro-region. The mature peptide is at the 3' end of the open reading frame. A glycine, not found in purified indolicidin, is present at the carboxyl terminus of the deduced sequence and is very likely involved in post-translational peptide amidation.  相似文献   

12.
Gramicidin S (GS) is a 10-residue cyclic beta-sheet peptide with lytic activity against the membranes of both microbial and human cells, i.e. it possesses little to no biologic specificity for either cell type. Structure-activity studies of de novo-designed 14-residue cyclic peptides based on GS have previously shown that higher specificity against microbial membranes, i.e. a high therapeutic index (TI), can be achieved by the replacement of a single L-amino acid with its corresponding D-enantiomer [Kondejewski, L.H. et al. (1999) J. Biol. Chem. 274, 13181]. The diastereomer with a D-Lys substituted at position 4 caused the greatest improvement in specificity vs. other L to D substitutions within the cyclic 14-residue peptide GS14, through a combination of decreased peptide amphipathicity and disrupted beta-sheet structure in aqueous conditions [McInnes, C. et al. (2000) J. Biol. Chem. 275, 14287]. Based on this information, we have created a series of peptide diastereomers substituted only at position 4 by a D- or L-amino acid (Leu, Phe, Tyr, Asn, Lys, and achiral Gly). The amino acids chosen in this study represent a range of hydrophobicities/hydrophilicities as a subset of the 20 naturally occurring amino acids. While the D- and L-substitutions of Leu, Phe, and Tyr all resulted in strong hemolytic activity, the substitutions of hydrophilic D-amino acids D-Lys and D-Asn in GS14 at position 4 resulted in weaker hemolytic activity than in the L-diastereomers, which demonstrated strong hemolysis. All of the L-substitutions also resulted in poor antimicrobial activity and an extremely low TI, while the antimicrobial activity of the D-substituted peptides tended to improve based on the hydrophilicity of the residue. D-Lys was the most polar and most efficacious substitution, resulting in the highest TI. Interestingly, the hydrophobic D-amino acid substitutions had superior antimicrobial activity vs. the L-enantiomers although substitution of a hydrophobic D-amino acid increases the nonpolar face hydrophobicity. These results further support the role of hydrophobicity of the nonpolar face as a major influence on microbial specificity, but also highlights the importance of a disrupted beta-sheet structure on antimicrobial activity.  相似文献   

13.
Clustering of glycine and NG,NG-dimethylarginine in nucleolar protein C23   总被引:14,自引:0,他引:14  
Protein C23 (Mr 110 000, pI = 5.5), a major phosphoprotein in the nucleolus of mammalian cells, has been shown to contain 1.3 mol% of NG,NG-dimethylarginine (DMA) [Lischwe, M.A., Roberts, K.D., Yeoman, L.C., & Busch, H. (1982) J. Biol. Chem. 257, 14600-14602]. A tryptic peptide from protein C23 that contains DMA has been isolated and sequenced. Its sequence is Gly-Glu-Gly-Gly-Phe-Gly-Gly-DMA-Gly-Gly-Gly-DMA-Gly-Gly-Phe-Gly-Gly-DMA- Gly-Gly- Gly-DMA-Gly-Gly-DMA-Gly-Gly-Phe-Gly-Gly-DMA-Gly-DMA-Gly-Gly-Phe-Gly-Gly- DMA-Gly-Gly-Phe-DMA-Gly-Gly-DMA-Gly-Gly-Gly-Gly-Asp-Phe-Lys. This peptide contains 34 glycine, 10 DMA, and 6 phenylalanine residues and has clusters of glycine and NG,NG-dimethylarginine interspersed with phenylalanine residues. A similar domain has been found at the amino terminus of a nucleolar protein of Mr 34,000, pI = 8.5. This sequence array may represent a conserved domain characteristic of a certain class of nuclear proteins. All of the methylated arginine residues in protein C23, the 34-kilodalton protein, and myelin basic protein [Carnegie, P.R. (1971) Biochem. J. 123, 57-67] have at least one adjacent glycine. Access of certain arginine methylases to arginine residues may be sterically possible because of the lack of a side chain on the adjacent glycine residue(s).  相似文献   

14.
Recently two reports [J. A. Robertson et al. (1986) J. Biol. Chem. 261, 15794-15799 and R. M. Bayney et al. (1987) J. Biol. Chem. 262, 572-575] have appeared concerning the nucleotide sequence of quinone reductase cDNA clones. Although the cDNA clones are virtually identical, they diverge in the 5' region that encodes the NH2 terminus of the protein. In order to clarify the sequence of this region, we have isolated quinone reductase clones from a rat genomic library using a cDNA clone, pDTD55, isolated and characterized by our laboratory. We have determined the sequence of exons 1 and 2 of the structural gene by double-stranded sequencing using oligonucleotide primers. The sequence of exons 1 and 2 of the quinone reductase structural gene along with our previous nucleotide sequence analysis of pDTD55 as well as conventional amino acid sequence analysis of the purified protein indicates that quinone reductase is composed of 274 amino acids with a molecular weight of 30,946. These data agree with the published sequence of lambda NMOR1 reported by Robertson et al.  相似文献   

15.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase has been isolated previously using classical protein isolation techniques [A. Guranowski and S. Blanquet (1985) J. Biol. Chem. 260, 3542-3547]. A protein A-Sepharose immunoaffinity column was prepared to simplify the purification procedure. The immunoaffinity column was prepared using specific polyclonal antibodies to Ap4A phosphorylase covalently coupled to protein A-Sepharose with dimethyl pimelimidate by a modification of the procedure of C. Schneider et al. [(1982) J. Biol. Chem. 257, 10,766-10,769]. The specific activity of the immunoaffinity-purified enzyme showed an increase equivalent to the specific activity obtained by chromatography on DEAE-cellulose and hydroxyapatite columns.  相似文献   

16.
17.
K Y Choi  W F Benisek 《Gene》1988,69(1):121-129
The structural gene for the delta 5-3-ketosteroid isomerase of Pseudomonas testosteroni has been sequenced by the dideoxy method. The sequence obtained confirms the amino acid (aa) sequence of Benson et al. [J. Biol. Chem. 246 (1971) 7514-7525] at all but 5 aa residues of the 125-aa polypeptide. Amino acid residues 22, 24, 33, and 38, reported to be asparagines by Benson et al., are found to be encoded by aspartic acid codons. Amino acid residue 77, reported to be a glutamine by Benson et al., is encoded by a glutamic acid codon. The identification of aa 38 as aspartic acid, coupled with its presence in the active site, as indicated by previous affinity and photoaffinity-labeling studies and confirmed independently by x-ray crystallographic studies, strengthens the hypothesis that Asp-38 is the aa responsible for the 4 beta to 6 beta proton transfer which is part of the enzymatic reaction.  相似文献   

18.
S Nakai  K Kawai  Y Hirai  K Tasaka 《Life sciences》1990,47(19):1707-1714
Interleukin-1 (IL-1) mediates a variety of immune and inflammatory responses. In order to understand the mechanisms involved in multiple biological functions, it is important to define the active sites of IL-1. Using the technique for site-specific mutagenesis, we tested whether the arginine residue at the 4th position in human IL-1 beta is essential for multiple biological activities. In our experiments, the fourth position is replaced by a non-basic amino acid--either glycine or aspartic acid. The resulting mutant protein shows both immunostimulatory activity and the ability to induce hematopoietic growth factors similar to native IL-1 beta, but has a markedly reduced pyrogenic potency. Therefore, the mutant protein of IL-1 beta may represent a good candidate for use in vivo as an adjuvant for poor immunogenic vaccines.  相似文献   

19.
We previously described the Trypanin family of cytoskeleton-associated proteins that have been implicated in dynein regulation [Hill et al., J Biol Chem2000; 275(50):39369-39378; Hutchings et al., J Cell Biol2002;156(5):867-877; Rupp and Porter, J Cell Biol2003;162(1):47-57]. Trypanin from T. brucei is part of an evolutionarily conserved dynein regulatory system that is required for regulation of flagellar beat. In C. reinhardtii, the trypanin homologue (PF2) is part of an axonemal 'dynein regulatory complex' (DRC) that functions as a reversible inhibitor of axonemal dynein [Piperno et al., J Cell Biol1992;118(6):1455-1463; Gardner et al., J Cell Biol1994;127(5):1311-1325]. The DRC consists of an estimated seven polypeptides that are tightly associated with axonemal microtubules. Association with the axoneme is critical for DRC function, but the mechanism by which it attaches to the microtubule lattice is completely unknown. We demonstrate that Gas11, the mammalian trypanin/PF2 homologue, associates with microtubules in vitro and in vivo. Deletion analyses identified a novel microtubule-binding domain (GMAD) and a distinct region (IMAD) that attenuates Gas11-microtubule interactions. Using single-particle binding assays, we demonstrate that Gas11 directly binds microtubules and that the IMAD attenuates the interaction between GMAD and the microtubule. IMAD is able to function in either a cis- or trans-orientation with GMAD. The discovery that Gas11 provides a direct linkage to microtubules provides new mechanistic insight into the structural features of the dynein-regulatory complex.  相似文献   

20.
We report here on physicochemical characteristics of chicken hemopexin, which can be isolated by heme-agarose affinity chromatography [Tsutsui, K., & Mueller, G. C. (1982) J. Biol. Chem. 257, 3925-3931], in comparison with representative mammalian hemopexins of rat, rabbit, and human. The avian polypeptide chain appears to be slightly longer (52 kDa) than the human, rat, or rabbit forms (49 kDa), and also the glycoprotein differs from the mammalian hemopexins in being an alpha 1-glycoprotein instead of a beta 1-glycoprotein. This distinct electrophoretic mobility probably arises from significant differences in the amino acid composition of the chicken form, which, although lower in serine and particularly in lysine, has a much higher glutamine/glutamate and arginine content, and also a higher proline, glycine, and histidine content, than the mammalian hemopexins. Compositional analyses and 125I concanavalin A and 125I wheat germ agglutinin binding suggest that chicken hemopexin has a mixture of three fucose-free N-linked bi- and triantennary oligosaccharides. In contrast, human hemopexin has five N-linked oligosaccharides and an additional O-linked glycan blocking the N-terminal threonine residue [Takahashi, N., Takahashi, Y., & Putnam, F. W. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 2021-2025], while the rabbit form has four N-linked oligosaccharides [Morgan, W. T., & Smith, A. (1984) J. Biol. Chem. 259, 12001-12006]. In keeping with the finding of a simpler carbohydrate structure, the avian hemopexin exhibits only a single band on polyacrylamide gel electrophoresis under both nondenaturing and denaturing conditions, whereas the hemopexins of the three mammalian species tested show several bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号