首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isocaloric modification in the ratio of dietary polyunsaturated-to-saturated fatty acids influences intestinal uptake of actively and passively transported nutrients. This study was undertaken to determine which dietary fatty acid was responsible for these alterations in absorption. Adult female rats were fed isocaloric semisynthetic diets high in palmitic and stearic acids (SFA), oleic acid (OA), linoleic acid (LA), or linolenic acid (LNA). An in vitro technique was used to measure the uptake of varying concentrations of glucose as well as a series of fatty acids and cholesterol. Jejunal uptake of 40 mM glucose was highest in rats fed SFA and lowest in those fed LA; ileal glucose uptake was similar in OA, LA, and LNA, but was lowest in SFA. Jejunal uptake of medium-chain fatty acids (8:0-12:0) was higher in OA than in other diet groups; ileal uptake of medium-chain fatty acids was unaffected by diet. Jejunal and ileal uptake of 18:2 was higher in LNA than in SFA or OA; the uptake of the other long-chain saturated or unsaturated fatty acids was unchanged by diet. The ileal but not the jejunal uptake of cholesterol was increased in LA as compared with SFA or OA, and reduced in LNA as compared with LA. These transport changes were not explained by differences in the animals' food consumption, body weight gain, intestinal mass, or mucosal surface area. We postulate that these diet-induced transport alterations may be mediated via changes in brush border membrane phospholipid fatty acyl composition. Thus, intestinal transport of nutrients may be varied by isocaloric changes in the dietary content of individual fatty acids.  相似文献   

2.
Livers from normally fed male and female rats were perfused in vitro with different amounts of oleate, and the production and properties of the very low density lipoprotein (VLDL) were studied. The mobility of the VLDL in the zonal ultracentrifuge was dependent on the uptake of free fatty acid and on the sex of the animal from which the liver was obtained. A higher proportion of the VLDL secreted by livers from females displayed a more rapid mobility in the zonal ultracentrifuge and, in addition, contained less phospholipid and cholesterol per mole triglyceride than the VLDL from the male, suggestive of larger size of the VLDL secreted by livers from the female rats. Such differences were diminished when the VLDL was compared at equal output of triglyceride but unequal uptake of free fatty acid. These data suggest that the properties of the VLDL are only secondarily modulated by sex, and primarily result from differences in the capacities of livers from either male or female rats to synthesize triglyceride for transport as VLDL. The quantity of triglyceride secreted, regardless of sex, may be an important determinant of both size and number of the VLDL particles. The incorporation of endogenous hepatic fatty acid into VLDL triglyceride was diminished in livers from both sexes by increased uptake of oleate. The greater output of VLDL triglyceride by livers from female animals was dependent on both exogenous and endogenous fatty acids when relatively small quantities of exogenous oleate were available for uptake by the liver. The proportion of palmitate and oleate in the phospholipid of the VLDL secreted by livers from male rats decreased and the content of arachidonate increased with increasing uptake of oleate; no differences were observed in the composition of the phospholipid fatty acids among the various experimental female groups, although these contained more stearate and less oleate and linoleate compared to the male groups. The change of fatty acid composition of the VLDL phospholipid may reflect inclusion of specific types of phospholipid in the VLDL structure for transport of triglyceride from the liver under particular conditions.  相似文献   

3.
High-fat diets are essential in suckling animals to ensure adequate calories for postnatal growth, but their lymphatic transport of dietary lipids has not been characterized. We established a lymph fistula model in suckling rats to quantify intestinal uptake and lymphatic transport of dietary lipids and analyzed lipoprotein fractions. Suckling 19-day-old Sprague-Dawley rats had their mesenteric lymph ducts cannulated and gastroduodenal tubes inserted. After overnight recovery, [(3)H]triolein and [(14)C]cholesterol were infused for 6 h. Of the total dose, only 38% of triolein and 24% of cholesterol were transported in the lymph of suckling rats. Analyses of residual luminal contents and intestinal mucosal homogenate showed neither reduced absorption nor delayed mucosal processing of ingested lipids to be the cause. Thin-layer chromatographic analysis of radioactive mucosal lipids, however, showed a predominance of free fatty acids (60%) and free cholesterol (67%), implying impaired esterification capacity in these animals. We speculate that this reduced esterification allows for portal transport or direct enterocyte metabolism of dietary lipids.  相似文献   

4.
Diets rich in polyunsaturated fatty acids lower plasma HDL cholesterol concentrations when compared to diets rich in saturated fatty acids. We investigated the mechanistic basis for this effect in the hamster and sought to determine whether reduced plasma HDL cholesterol concentrations resulting from a high polyunsaturated fat diet are associated with a decrease in reverse cholesterol transport. Animals were fed semisynthetic diets enriched with polyunsaturated or saturated fatty acids for 6 weeks. We then determined the effect of these diets on the following parameters: 1) hepatic scavenger receptor B1 (SR-BI) mRNA and protein levels, 2) the rate of hepatic HDL cholesteryl ester uptake, and 3) the rate of cholesterol acquisition by the extrahepatic tissues (from de novo synthesis, LDL and HDL) as a measure of the rate of reverse cholesterol transport. Compared to saturated fatty acids, dietary polyunsaturated fatty acids up-regulated hepatic SR-BI expression by approximately 50% and increased HDL cholesteryl ester transport to the liver; as a consequence, plasma HDL cholesteryl ester concentrations were reduced. Although dietary polyunsaturated fatty acids increased hepatic HDL cholesteryl ester uptake and lowered plasma HDL cholesterol concentrations, there was no change in the cholesterol content or in the rate of cholesterol acquisition (via de novo synthesis and lipoprotein uptake) by the extrahepatic tissues.These studies indicate that substitution of polyunsaturated for saturated fatty acids in the diet increases SR-BI expression and lowers plasma HDL cholesteryl ester concentrations but does not affect reverse cholesterol transport.  相似文献   

5.
We examined effects on intestinal absorption of cholesterol and triglycerides and intestinal lipoprotein formation by feeding rats diets in which saturated fatty acids (palmitic plus stearic) comprised 78%, 68%, 48%, or 38% of triglyceride fatty acids. Absorption into lymph of radiolabeled cholesterol was proportional to triglyceride absorption. The rates of absorption of these lipids were related inversely to the % saturated fatty acids fed. The distribution of newly absorbed cholesterol and triglyceride into intestinal lipoproteins differed. With increasing cholesterol absorption more was recovered in very low density lipoproteins in contrast to the appearance preferentially in chylomicrons of larger quantities of fatty acid. Lymph lipid content did not reflect a consistent pattern in relation to the experimental diet fed. The fatty acid composition of triglyceride-rich lymph lipoproteins resembled the diet closely. One-quarter of the intestinal lymph particles from rats fed the highly saturated diets was flattened and polygonal as judged by electron microscopy if cooled to room temperature; whereas with the same diets, particles collected and isolated at 37 degrees C were round. Proportions of A-I and C apolipoproteins in triglyceride-rich intestinal particles varied inversely; apoA-I increased as fat/cholesterol absorption was greater. Diet-induced alterations in plasma lipoproteins and increased circulating triglycerides in this study in rats were unrelated to the variations in intestinal absorption or lymph lipoprotein formation.  相似文献   

6.
2-week isocaloric modifications in the dietary ratio of polyunsaturated/saturated fatty acids (P/S) alters intestinal transport in rats. This study was undertaken to test the hypotheses that (1) the fatty acid composition of a nutritionally adequate diet in early life has lasting consequences for active and passive intestinal transport processes; and (2) early life feeding experiences with diets of varying fatty acid composition influence the intestines' ability to adaptively up- or down-regulate intestinal transport in later life. Female Sprague-Dawley rats were weaned onto S or P and were maintained on these diets for 2, 10 or 12 weeks. An in vitro uptake technique was used in which the bulk phase was vigorously stirred to reduce the effective resistance of the intestinal unstirred water layer. P decreased and S increased the uptake of glucose, and this effect was progressive from 2 to 12 weeks. Switching from a P to an S diet decreased jejunal but increased ileal uptake of glucose, whereas switching from an S to a P diet was associated with a decline in both the jejunal and the ileal uptake of glucose. The ileal uptake of galactose increased as the animals grew on either P or S. Switching from P to S resulted in a decline in ileal uptake of galactose, whereas the opposite effect was observed when switching from S to P. The effect of feeding P or S on hexose uptake was influenced by the animals' dietary history: ileal glucose and galactose uptake was lower in animals fed P at an early age (PSP) than in animals fed P for the first time in later life (SSP). Jejunal glucose and galactose uptake was also lower in animals fed S at an early age (SPS) than in those fed S for the first time in later life (PPS). The alterations in the uptake of long-chain saturated and unsaturated fatty acids and cholesterol did not progress with longer periods of feeding, and in the jejunum, lipid uptake did not change when switching from P to S or S to P. Early feeding with P (PSP vs. SSP) was associated with lower jejunal uptake of 18:3 and lower ileal uptake of 12:0, whereas previous feeding with S (SPS vs. PPS) was associated with lower ileal uptake of cholesterol. The changes in uptake of hexoses and lipids was not explained by differences in the animals' food consumption, body or intestinal weight or mucosal surface area.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
High carbohydrate diets enhance the hepatic output of very low density lipoprotein triglycerides. The fatty acids of these triglycerides could come from exogenous sources (i.e., diet or adipose tissue) or from de novo fatty acid synthesis in the liver. The role of exogenous free fatty acids was evaluated in rats fed Purina Chow or diets containing 10% fructose for up to 14 wk. In carbohydrate-fed rats, serum triglycerides were twice normal, and VLDL accounted for about 60% of the increases. Pre-beta-lipoprotein was increased and alpha- and beta-lipoprotein were decreased. Phospholipid and cholesterol levels were unchanged. Livers were perfused with glucose and free fatty acids. Perfusate free fatty acids rose from 180 to 1800 micro eq/liter as the infused acids increased from 0 to 992 micro eq/3 hr; simultaneously, net free fatty acid uptake rose from < 1 to 18 micro eq/g/hr and triglyceride output by the liver doubled. However, rates of secretion of triglyceride became constant, and triglyceride accumulated in liver at uptakes of free fatty acids > 13 micro eq/g/hr. More lauric and myristic acid appeared in the perfusate than was infused, suggesting the hepatic discharge of free fatty acids. Livers of fructose-fed rats secreted twice as much oleate-(14)C-labeled triglyceride as controls at all levels of free fatty acid uptake. The ratios of the specific activities of perfusate triglyceride to free oleate-(14)C were unaffected by diet and were about 0.6 and 1.0 at low and high triglyceride secretion rates, respectively. Thus, carbohydrate feeding did not result in altered uptakes of free fatty acids or preferential secretion of triglycerides containing endogenously synthesized fatty acid. Instead, the increased secretion of triglyceride was accomplished by enhanced formation of VLDL triglyceride from exogenous free fatty acids.  相似文献   

8.
Diabetes mellitus is associated with enhanced passive intestinal uptake of cholesterol and fatty acids. In order to determine the basis for these changes in intestinal permeability, the jejunal morphology and the lipid content of purified brush border membranes (BBM) were measured in fasted and fed control (C) and streptozotocin diabetic (DM) rats. There was no difference between C and DM in BBM sucrase or alkaline phosphatase; fasting had no effect on BBM enzymes in C, but in DM fasting was associated with increased sucrase activity per length of jejunum. In C fasting was associated with higher levels of BBM total phospholipid, lecithin, choline and amine phospholipids, whereas fasting in DM was associated with higher BBM cholesterol and lower free fatty acids. In the fasting DM, there was a greater villus and mucosal surface area than in the fasting C. A previous study demonstrated that with fasting in DM versus C, cholesterol uptake was unchanged, but when animals were fed, cholesterol and fatty acid uptake were greater into the jejunum of fed DM as compared with fed C. In the BBM of fed DM as compared with C, there was a significant increase in total phospholipid, lecithin, phosphatidyl ethanolamine, choline and amine phospholipids, and phospholipid/cholesterol ratio. Thus, (1) fasting is associated with changes in intestinal morphology, BBM lipids; (2) the effect of fasting is different in DM and C; (3) the enhanced uptake of lipids into the jejunum of fed diabetic rats is not due to changes in villus morphology, but may be due to alterations in the BBM phospholipids.  相似文献   

9.
We tested the hypothesis that diets containing fish oils prevent the effects of a high cholesterol diet on the morphology and nutrient uptake of the intestine. Isocaloric semisynthetic diets were supplemented with beef tallow or fish oil containing low or high amounts of cholesterol and were fed to growing female Wistar rats for 14 days, after which the in vitro jejunal and ileal uptake of glucose, galactose, long-chain fatty acids, and cholesterol was determined. Feeding cholesterol with beef tallow was associated with a 12% decrease in the jejunal mucosal surface area. Feeding fish oil decreased jejunal mucosal surface area by 24%, as compared with the beef tallow diet, but the reduction was increased to 42% when fish oil and cholesterol were fed together. Ileal surface area was unaffected by varying the major source of dietary lipid, or by adding cholesterol. Despite the effect of fish oil on the mucosal surface area, the jejunal and ileal uptake of saturated as well as unsaturated long-chain fatty acids and cholesterol was similar in the four diet groups. Cholesterol supplementation enhanced the jejunal uptake of high concentrations of galactose only when fed with beef tallow, i.e., feeding fish oil prevented the enhancing effect of cholesterol on galactose uptake observed when beef tallow was fed. Thus, (i) a fish oil diet prevents the enhancing effect of cholesterol on jejunal active transport of galactose, an effect not explained by the reduction in jejunal mucosal surface area observed with the fish oil diet; (ii) these dietary manipulations result in a clear dissociation of the morphological from the transport adaptation of the intestine; and (iii) substitution of fish oil for beef tallow as the major source of lipid in the diet prevents the influence of cholesterol on the active intestinal transport of galactose.  相似文献   

10.
Intestinal absorption of most nutrients is enhanced in diabetic rats. We wished to test the hypothesis that manipulation of dietary fatty acids will modify enhanced uptake of glucose in rats with established streptozotocin-diabetes. Chow-fed control rats or animals with one week of streptozotocin-diabetes were continued on chow or were fed ad libitum for three weeks with semisynthetic isocaloric diets containing a high content of either essential polyunsaturated or non-essential saturated fatty acids. The jejunal and ileal in vitro uptake of varying concentrations of glucose was much higher in diabetic than control rats fed chow or the saturated fatty acid diet. In contrast, the enhanced uptake of this sugar was reduced or normalized in diabetic rats fed the polyunsaturated fatty acid diet. Feeding the polyunsaturated fatty acid diet was associated with increased brush-border membrane activity of alkaline phosphatase in diabetic jejunum and ileum, but neither the saturated fatty acid diet nor the polyunsaturated fatty acid diet altered brush-border membrane cholesterol or phospholipids in control or in diabetic rats. Mucosal surface area was similar in diabetic rats fed the saturated fatty acid diet or the polyunsaturated fatty acid diet. Thus, (1) feeding the polyunsaturated fatty acid diet diminishes the enhanced jejunal and ileal uptake of glucose in diabetic rats, and (2) the influence of the polyunsaturated fatty acid diet on uptake in diabetic rats was not explained by alterations in intestinal morphology or brush-border membrane content of cholesterol or phospholipids. This study suggests that manipulation of dietary lipids may play a role in the normalization of the enhanced intestinal glucose uptake in rats with established diabetes.  相似文献   

11.
Lacteals are the entry point of all dietary lipids into the circulation, yet little is known about the active regulation of lipid uptake by these lymphatic vessels, and there lacks in vitro models to study the lacteal—enterocyte interface. We describe an in vitro model of the human intestinal microenvironment containing differentiated Caco‐2 cells and lymphatic endothelial cells (LECs). We characterize the model for fatty acid, lipoprotein, albumin, and dextran transport, and compare to qualitative uptake of fatty acids into lacteals in vivo. We demonstrate relevant morphological features of both cell types and strongly polarized transport of fatty acid in the intestinal‐to‐lymphatic direction. We found much higher transport rates of lipid than of dextran or albumin across the lymphatic endothelial monolayer, suggesting most lipid transport is active and intracellular. This was confirmed with confocal imaging of Bodipy, a fluorescent fatty acid, along with transmission electron microscopy. Since our model recapitulates crucial aspects of the in vivo lymphatic–enterocyte interface, it is useful for studying the biology of lipid transport by lymphatics and as a tool for screening drugs and nanoparticles that target intestinal lymphatics. Biotechnol. Bioeng. 2009;103: 1224–1235. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Either high protein, low carbohydrate (HP) or low protein, high carbohydrate (LP) diets were fed for 6 weeks to rabbits with or without resection of the distal half of the small intestine. Control and resected rabbits fed HP consumed more food and gained more weight than the animals fed LP. The level of dietary protein has a different effect on intestinal transport in animals with an ileal resection than in those with an intact small intestine. With 0.5 mM glucose, the in vitro uptake in control rabbits was greater for the LP than HP diet but was unchanged in resected rabbits; uptake of 0.5 mM galactose and 3-O-methyl glucose was unaffected by HP and LP, whereas in rabbit uptake was lower in LP than HP. The uptake of 40 mM glucose was greater with the LP than HP diet in control rabbits, but lower with LP than HP in resected rabbits. In control rabbits, the uptake of aluric acid was lower on the LP than HP diet; the uptake of octanoic acid, decanoic acid, and cholesterol was unchanged; and the uptake of each fatty acid and cholesterol was greater in resected rabbits fed LP than HP. Feeding a low protein diet to animals with an ileal resection is associated with lower jejunal uptake of high concentrations of glucose, but the higher uptake of galactose and enhanced permeability to fatty acids result in superior weight gain. Thus, recommendations for alterations in dietary protein and carbohydrate levels following ileal resection must be made with the knowledge that these changes may influence intestinal transport function as well as body weight gain.  相似文献   

13.
Omega 3 polyunsaturated fatty acids are promoted as beneficial in the prevention of metabolic and cardiovascular diseases. In general, dietary omega 3 fatty acids are derived from plant sources as linolenic acid (LNA, C18:3 omega3) the precursor to eicosapentaenoic acid (EPA, C20:5 omega3) and docosahexaenoic acid (DHA, C22:6 omega3). However, it remains unclear if the polyunsaturated fatty acid (PUFA) LNA can provide the same health benefits as the very long chain highly unsaturated fatty acids (HUFA) EPA and DHA generally derived from oily fish. In this study, mice were fed synthetic diets containing lard (low in PUFA and HUFA), canola oil (to supply PUFA), or a mixture of menhaden and arasco (fish and fungal) oils (to supply HUFA) for 8 weeks. The diets were neither high in calories nor fat, which was supplied at 6%. The lard and canola oil diets resulted in high levels of hepatic triglycerides and cholesterol and elevation of lipogenic gene expression. By comparison livers from mice fed the fish/fungal oil diet had low levels of lipid accumulation and more closely resembled livers from mice fed standard laboratory chow. SREBP1c and PPARgamma gene and protein expression were high in livers of animals fed diets containing lard or canola oil compared with fish/fungal oil. Hepatic fatty acid analyses indicated that dietary PUFA were efficiently converted to HUFA regardless of source. Therefore, differences in hepatic lipid levels and gene expression between dietary groups were due to exogenous fatty acid supplied rather than endogenous pools. These results have important implications for understanding the regulation of hepatic lipogenesis by dietary fatty acids.  相似文献   

14.
Alterations in transport function have been described 6 weeks after surgical resection of 50% of the distal small intestine. Previous studies demonstrated a modest increase in the jejunal uptake of medium chain length fatty acids following resection, while the uptake of many other lipids (cholesterol, bile acids, fatty alcohols, short and long chain length fatty acids) appears to be unaffected. Marked changes in the kinetic constants for the carrier-mediated uptake of four sugars and leucine were observed following resection, but the changes in transport were not associated with changes in the mucosal surface area. This study was undertaken to examine the possible adaptive mechanisms that occur with ileal resection in the rabbit. A 29% increase in the wet weight of jejunal mucosal scrapings and a 53% increase in jejunal brush border membrane (BBM) protein was observed following resection. The jejunal BBM sucrase (S) was unchanged following ileal resection, but alkaline phosphatase (AP) total activities were increased in the resected rabbits. This resulted in a 45% increase in the ratio of AP/S with resection. The lipid composition (total free fatty acids, total bile acids, total cholesterol, total phospholipids, individual phospholipids, and the ratio of total phospholipids/total cholesterol) of BBM was similar in control and resected rabbits. This suggests that quantitative rather than qualitative changes in the membrane composition may be responsible for the transport changes observed in resected animals.  相似文献   

15.
The purpose of this work was to determine whether the changes induced by dietary manipulations in the chemical composition of high-density lipoproteins (HDL) (particularly phospholipid fatty acid composition) modified their capacity to promote [3H]cholesterol efflux from cultured fibroblasts. Plasma HDL were obtained from subjects fed for six successive long periods on diets consisting of one predominant fat: peanut oil, corn oil, olive oil, soybean oil, low erucic acid rapeseed oil or milk fats. The [3H]cholesterol efflux from cells in the presence of plasma HDL was studied by means of normal adult human fibroblasts in culture. The [3H]cholesterol efflux from fibroblasts appeared to be independent of the overall composition of HDL and of the degree of saturation of the HDL phospholipid fatty acids, but it was correlated with the phospholipid fatty acid chain length. The [3H]cholesterol efflux from fibroblasts is highly and positively correlated with the sum of the HDL phospholipid C20, C22, C24 fatty acids, and negatively correlated with the sum of the HDL phospholipid C18 fatty acids.  相似文献   

16.
The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low.  相似文献   

17.
The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. We have expressed two naturally occurring splice variants of human FATP2 (Acsvl1) in yeast and 293T-REx cells and addressed their roles in fatty acid transport, activation, and intracellular trafficking. Although both forms (FATP2a (Mr 70,000) and FATP2b (Mr 65,000 and lacking exon3, which encodes part of the ATP binding site)) were functional in fatty acid import, only FATP2a had acyl-CoA synthetase activity, with an apparent preference toward very long chain fatty acids. To further address the roles of FATP2a or FATP2b in fatty acid uptake and activation, LC-MS/MS was used to separate and quantify different acyl-CoA species (C14–C24) and to monitor the trafficking of different classes of exogenous fatty acids into intracellular acyl-CoA pools in 293T-REx cells expressing either isoform. The use of stable isotopically labeled fatty acids demonstrated FATP2a is involved in the uptake and activation of exogenous fatty acids, with a preference toward n-3 fatty acids (C18:3 and C22:6). Using the same cells expressing FATP2a or FATP2b, electrospray ionization/MS was used to follow the trafficking of stable isotopically labeled n-3 fatty acids into phosphatidylcholine and phosphatidylinositol. The expression of FATP2a resulted in the trafficking of C18:3-CoA and C22:6-CoA into both phosphatidylcholine and phosphatidylinositol but with a distinct preference for phosphatidylinositol. Collectively these data demonstrate FATP2a functions in fatty acid transport and activation and provides specificity toward n-3 fatty acids in which the corresponding n-3 acyl-CoAs are preferentially trafficked into acyl-CoA pools destined for phosphatidylinositol incorporation.  相似文献   

18.
Chow-fed rats were given 15% ethanol in their drinking water for 4 weeks, and then for the next 2 weeks of ethanol exposure they were fed isocaloric semisynthetic diets enriched in either saturated (S) or polyunsaturated (P, linoleic acid) fats. Food intake was lower in ethanol-fed (ETH) than in control (C) rats, but the average body weight gain was similar in ETH and C fed S or P. Intestinal dry weight and the percentage of the intestinal wall comprised of mucosa were more than 2-fold higher in ETH than C fed P, whereas these values were 50% lower in ETH than C fed S. The in vitro jejunal uptake of glucose and galactose was higher in ETH than C fed S, whereas the converse was true when feeding P. These effects were due to differences in the values of the maximal transport rate (Vmax), the Michaelis constant (Km), and the contribution of passive permeation. The relative permeability of the intestine to lipids was unchanged by giving ethanol or by feeding S or P, but the individual rates of uptake of most medium- and long-chain fatty acids and cholesterol were lower in ETH fed P as compared with S. In a second series of studies the acute effect of ethanol exposure was examined: animals were fed S or P for 2 weeks and the intestine was then removed: when 5% ethanol was added directly to the test solutions, there was lower in vitro jejunal and ileal uptake of glucose and higher jejunal uptake of 18:2 when rats were previously fed P, but not in those fed S. In summary; (1) feeding an isocaloric polyunsaturated fatty acid diet has a trophic effect on the intestinal mucosa of animals chronically drinking ethanol; and (2) feeding rats a diet enriched with saturated fatty acids prevents the inhibitory effects of acute and chronic ethanol exposure on the in vitro jejunal uptake of glucose, galactose and lipids observed in animals fed a polyunsaturated diet. Thus, the effect of chronic consumption of ethanol on the active and passive jejunal uptake of nutrients is influenced by the type of lipids in the animal's diet.  相似文献   

19.
Fatty acids are essential for immune cell function. Maternal dietary fatty acid supply influences body fat composition of their offspring. As a first step to study immunonutritional interactions at an early age of pigs, four sows were fed a diet containing sunflower oil or oil from seal blubber during pregnancy and lactation. Corresponding piglets were sacrificed at three consecutive time points in the suckling period and their mesenteric lymph nodes and spleen were analysed by gas chromatography for levels of fatty acid. At the same time mononuclear cells of these organs and of the intestinal lymphoid tissue from the jejunum were isolated and subpopulations characterised by flow cytometry. Levels of fatty acids from the lymphatic organs of the piglets were significantly influenced by the maternal diet. The concentration of the fatty acids 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the spleen and mesenteric lymph node of piglets suckled to sows of the test diet. Additionally, suckling time affected the levels of some long chain polyunsaturated fatty acids. Dietary effects were seen on some subpopulations including CD4-CD8alpha+ lymphocytes of the mesenteric lymph nodes and CD4+CD8alpha+ lymphocytes of the lamina propria, which were higher in the group fed seal blubber oil. The levels of CD21+ B-cells were higher in the group fed sunflower oil. The results indicate that the maternal diet and suckling time affect the fatty acid status of the investigated lymphatic tissues of piglets, but may have minor effects on the investigated lymphocyte subpopulations.  相似文献   

20.
Medium chain triglycerides are considered to be readily absorbed intact in the absence of pancreatic lipase, unlike long chain triglycerides. Commercial medium chain triglyceride oils comprise various medium chain fatty acids from 6 to 12 carbons in length resulting in triglyceride molecules of different sizes and molecular weights. The effect of molecular weight and hence fatty acid chain length on the efficiency of intact medium chain triglyceride absorption is unknown. Therefore, this study measured, using a single-pass marker perfusion technique, intestinal jejunum absorption of five medium chain and one long chain triglycerides in anesthetized Sprague-Dawley rats. The molecular weights of the five medium chain triglycerides were 470.7, 498.8, 526.8, 554.9, 639.0, and the long chain triglyceride, 885.4. Residual luminal pancreatic lipase was removed prior to lipid perfusion. This study demonstrated that medium chain triglycerides were absorbed in the absence of lipase whereas long chain triglyceride was not. There was no significant variation in the absorption of the five different medium chain triglycerides perfused. The molecular weight of the medium chain triglyceride did not affect its intact absorption by the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号