首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Microsatellite typing of the rhesus macaque MHC region   总被引:16,自引:8,他引:8  
To improve the results gained by serotyping rhesus macaque major histocompatibility complex (MHC) antigens, molecular typing techniques have been established for class I and II genes. Like the rhesus macaque Mamu-DRB loci, the Mamu-A and -B are not only polymorphic but also polygenic. As a consequence, sequence-based typing of these genes is time-consuming. Therefore, eight MHC-linked microsatellites, or short tandem repeats (STRs), were evaluated for their use in haplotype characterization. Polymorphism analyses in rhesus macaques of Indian and Chinese origin showed high STR allelic diversity in both populations but different patterns of allele frequency distribution between the groups. Pedigree data for class I and II loci and the eight STRs allowed us to determine extended MHC haplotypes in rhesus macaque breeding groups. STR sequencing and comparisons with the complete rhesus macaque MHC genomic map allowed the exact positioning of the markers. Strong linkage disequilibria were observed between Mamu-DR and -DQ loci and adjacent STRs. Microsatellite typing provides an efficient, robust, and quick method of genotyping and deriving MHC haplotypes for rhesus macaques regardless of their geographical origin. The incorporation of MHC-linked STRs into routine genetic tests will contribute to efforts to improve the genetic characterization of the rhesus macaque for biomedical research and can provide comparative information about the evolution of the MHC region.  相似文献   

2.
 The human major histocompatibility complex (MHC) is located within a 4 megabase segment on chromosome 6p21.3. Recently, a highly divergent MHC class I chain-related gene family, MIC was identified within the class I region. The MICA and MICB genes in this family have unique patterns of tissue expression. The MICA gene is highly polymorphic, with more than 20 alleles identified to date. To elucidate the extent of MICB allelic variations, we sequenced exons 2 (α1), 3 (α2), 4 (α3), and 5 (transmembrane) as well as introns 2 and 4 of this gene in 46 HLA homozygous B-cell lines. We report the identification of eleven alleles based on seven non-synonymous, two synonymous, and four intronic nucleotide variations. Interestingly, one allele has a nonsense mutation resulting in a premature termination codon in the α2 domain. Thus, MICB appears to have fewer alleles than MICA, not unlike the allelic ratio between the HLA-C and -B loci. A preliminary linkage analysis of the MICB alleles with those of the closely located MICA and HLA-B genes revealed no conspicuous linkage disequilibrium between them, implying the presence of a potential recombination hotspot between the MICB and MICA genes. Received: 16 April 1997 / Revised: 19 May 1997  相似文献   

3.
Rhesus macaques have long been used as animal models for various human diseases; the susceptibility and/or resistance to some of these diseases are related to the major histocompatibility complex (MHC). To gain insight into the MHC background and to facilitate the experimental use of Chinese rhesus macaques, Mamu-DPA1, Mamu-DQA1, and Mamu-DRA alleles were investigated in 30 Chinese rhesus macaques by gene cloning and sequencing. A total of 14 Mamu-DPA1, 17 Mamu-DQA1, and 9 Mamu-DRA alleles were identified in this study. Of these alleles, 22 novel sequences have not been documented in earlier studies, including nine Mamu-DPA1, ten Mamu-DQA1, and three Mamu-DRA alleles. Interestingly, like Mafa-DQA1 and Mafa-DPA1, more than two Mamu-DQA1 and Mamu-DPA1 alleles were detected in one animal in this study, which suggested that they might represent gene duplication. If our findings can be validated by other studies, it will further increase the number of known Mamu-DPA1 and Mamu-DQA1 polymorphisms. Our data also indicated significant differences in MHC class II allele distribution among the Chinese rhesus macaques, Vietnamese cynomolgus macaques, and the previously reported rhesus macaques, which were mostly of Indian origin. This information will not only promote the understanding of Chinese rhesus macaque MHC diversity and polymorphism but will also facilitate the use of Chinese rhesus macaques in studies of human disease.  相似文献   

4.
A thoroughly characterized breeding colony of 172 pedigreed rhesus macaques was used to analyze exon 2 of the polymorphic Mamu-DPB1, -DQA1, -DQB1, and -DRB loci. Most of the monkeys or their ancestors originated in India, though the panel also included animals from Burma and China, as well as some of unknown origin and mixed breeds. In these animals, mtDNA appears to correlate with the aforementioned geographic origin, and a large number of Mamu class II alleles were observed. The different Mamu-DPB1 alleles were largely shared between monkeys of different origin, whereas in humans particular alleles appear to be unique for ethnic populations. In contrast to Mamu-DPB1, the highly polymorphic -DQA1/DQB1 alleles form tightly linked pairs that appear to be about two-thirds population specific. For most of the DQA1/DQB1 pairs, Mamu-DRB region configurations present on the same chromosome have been ascertained, resulting in 41 different -DQ/DRB haplotypes. These distinct DQ/DRB haplotypes seem to be specific for monkeys of a determined origin. Thus, in evolutionary terms, the Mamu-DP, -DQ, and -DR regions show increasing instability with regard to allelic polymorphism, such as for -DP/DQ, or gene content and allelic polymorphism, such as for -DR, resulting in population-specific class II haplotypes. Furthermore, novel haplotypes are generated by recombination-like events. The results imply that mtDNA analysis in combination with Mhc typing is a helpful tool for selecting animals for biomedical experiments.The sequences reported in this paper have been deposited in the EMBL database (accession nos. AJ534296–AJ534304, AJ 564564, and AJ557455–AJ557511)  相似文献   

5.
6.
The human MHC class I (MHC-I) chain-related genes A and B (MICA and MICB) encode stress-induced glycoproteins, ligands for the activating receptor NKG2D. They display an unusually high degree of polymorphism, next only to that of classical MHC-I. The functional relevance and selective pressure behind this peculiar polymorphism, which is quite distinct from that of classical MHC-I, remain largely unknown. This study increases the repertoire of allelic sequences determined for the MIC genes of non-human primates. Sequencing (mainly exons 2, 3, 4, 5) MIC genes of 72 Macaca fascicularis (Mafa), 63 Pan troglodytes (Patr), and 18 Gorilla gorilla (Gogo) individuals led to the identification of 35, 14, and 3 new alleles, respectively. Additionally, we confirm the existence of three independent MIC genes in M. fascicularis, i.e., Mafa-MICA, Mafa-MICB, and Mafa-MICB/A, the latter being a hybrid of Mafa-MICB and Mafa-MICA. By multiple sequence alignment and phylogenetic analysis, we further demonstrate that the present day MIC genes most likely derive from a single human MICB-like ancestral gene.  相似文献   

7.
In contrast to rhesus monkeys, substantial knowledge on cynomolgus monkey major histocompatibility complex (MHC) class II haplotypes is lacking. Therefore, 17 animals, including one pedigreed family, were thoroughly characterized for polymorphic Mhc class II region genes as well as their mitochondrial DNA (mtDNA) sequences. Different cynomolgus macaque populations appear to exhibit unique mtDNA profiles reflecting their geographic origin. Within the present panel, 10 Mafa-DPB1, 14 Mafa-DQA1, 12 Mafa-DQB1, and 35 Mafa-DRB exon 2 sequences were identified. All of these alleles cluster into lineages that were previously described for rhesus macaques. Moreover, about half of the Mafa-DPB1, Mafa-DQA1, and Mafa-DQB1 alleles and one third of the Mafa-DRB exon 2 sequences are identical to rhesus macaque orthologues. Such a high level of Mhc class II allele sharing has not been reported for primate species. Pedigree analysis allowed the characterization of nine distinct Mafa class II haplotypes, and seven additional ones could be deduced. Two of these haplotypes harbor a duplication of the Mafa-DQB1 locus. Despite extensive allele sharing, rhesus and cynomolgus monkeys do not appear to possess identical Mhc class II haplotypes, thus illustrating that new haplotypes were generated after speciation by recombination-like processes.  相似文献   

8.
The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques?? major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC?Cpeptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses.  相似文献   

9.
Certain combinations of the killer immunoglobulin-like receptors (KIR) and major histocompatibility complex class I ligands in humans predispose carriers to a variety of diseases, requiring sophisticated genotyping of the highly polymorphic and diverse KIR and HLA genes. Particularly, KIR genotyping is challenging due to polymorphisms (allelic substitutions), genomic diversity (presence/absence of genes), and frequent duplications. Rhesus macaques are often used as important animal models of human diseases such as, e.g. AIDS. However, typing of rhesus macaque KIR genes has not been described so far. In this study, we report the identification of additional novel rhesus macaque KIR cDNA sequences and a sequence-specific KIR genotyping assay. From a cohort of four rhesus macaque families with a total of 70 individuals, we identified 25 distinct KIR genotypes. Segregation analyses of KIR genes and of two polymorphic microsatellite markers allowed the identification of 21 distinct KIR haplotypes in these families, with five to 11 segregating KIR genes per haplotype. Our analyses confirmed and extended knowledge on differential gene KIR gene content in macaques and indicate that rhesus macaque and human KIR haplotypes show a comparable level of diversity and complexity.  相似文献   

10.
Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the “seven coding exon” type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral “eight coding exon” type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.  相似文献   

11.
 Rhesus macaques represent important animal models for biomedical research. The ability to identify macaque major histocompatibility complex (Mhc) alleles is crucial for fully understanding these models of autoimmune and infectious disease. Here we describe a rapid and unambiguous way to distinguish DRB alleles in the rhesus macaque using the polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE), and direct sequencing. The highly variable second exon of Mamu-DRB alleles was amplified using generic DRB primers and alleles were separated by DGGE. DNA was then reamplified from plugs removed from the gel and alleles were determined using fluorescent-based sequencing. Validity of this typing procedure was confirmed by identification of all DRB alleles for three macaques previously characterized by cloning and sequencing techniques. Importantly, our analysis revealed DRB alleles not previously identified in the three reference animals. Using this technique, we identified 40 alleles in fifteen unrelated macaques. On the basis of phylogenetic tree analyses, 14 new DRB alleles were assigned to 10 different Mhc-DRB lineages. Interestingly, two of the new DRB6 lineages had previously been identified in prosimians and pigtailed macaques. Whereas traditional DRB typing methods provide limited information, our new technique provides a simple and relatively rapid way of identifying DRB alleles for tissue typing, determining individual identification and studies of disease association and susceptibility. This new technique should also contribute to ongoing studies of Mhc function and evolution in many different species of nonhuman primates. Received: 29 May 1996 / Revised: 8 August 1996  相似文献   

12.
Macaque models are invaluable for AIDS research. Indeed, initial development of HIV-1 vaccines relies heavily on simian immunodeficiency virus-infected rhesus macaques. Neutralizing antibodies, a major component of anti-HIV protective responses, ultimately interact with Fc receptors on phagocytic and natural killer cells to eliminate the pathogen. Despite the major role that Fc receptors play in protective responses, there is very limited information available on these molecules in rhesus macaques. Therefore, in this study, rhesus macaque CD32 (FcγRII) and CD64 (FcγRI) homologues were genetically characterized. In addition, presence of CD16 (FcγRIII), CD32, and CD64 allelic polymorphisms were determined in a group of nine animals. Results from this study show that the predicted structures of macaque CD32 and CD64 are highly similar to their human counterparts. Macaque and human CD32 and CD64 extracellular domains are 88–90% and 94–95% homologous, respectively. Although all cysteines are conserved between the two species, macaque CD32 exhibits two additional N-linked glycosylation sites, whereas CD64 lacks three of them when compared to humans. Five CD32, three CD64, and three CD16 distinct allelic sequences were indentified in the nine animals examined, indicating a relatively high level of polymorphism in macaque Fcγ receptors. Together, these results validate rhesus macaques as models for vaccine development and antibody responses, while at the same time, underscoring the need to take into account the high degree of genetic heterogeneity present in this species when designing experimental protocols.  相似文献   

13.
The DRB region of the major histocompatibility complex (MHC) of cynomolgus and rhesus macaques is highly plastic, and extensive copy number variation together with allelic polymorphism makes it a challenging enterprise to design a typing protocol. All intact DRB genes in cynomolgus monkeys (Mafa) appear to possess a compound microsatellite, DRB-STR, in intron 2, which displays extensive length polymorphism. Therefore, this STR was studied in a large panel of animals, comprising pedigreed families as well. Sequencing analysis resulted in the detection of 60 Mafa-DRB exon 2 sequences that were unambiguously linked to the corresponding microsatellite. Its length is often allele specific and follows Mendelian segregation. In cynomolgus and rhesus macaques, the nucleotide composition of the DRB-STR is in concordance with the phylogeny of exon 2 sequences. As in humans and rhesus monkeys, this protocol detects specific combinations of different DRB-STR lengths that are unique for each haplotype. In the present panel, 22 Mafa-DRB region configurations could be defined, which exceeds the number detected in a comparable cohort of Indian rhesus macaques. The results suggest that, in cynomolgus monkeys, even more frequently than in rhesus macaques, new haplotypes are generated by recombination-like events. Although both macaque species are known to share several identical DRB exon 2 sequences, the lengths of the corresponding microsatellites often differ. Thus, this method allows not only fast and accurate DRB haplotyping but may also permit discrimination between highly related macaque species.  相似文献   

14.
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding α1 and α2 domains, suggesting failure of peptide binding is responsible for retaining ‘intracellular’ Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.  相似文献   

15.
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding α1 and α2 domains, suggesting failure of peptide binding is responsible for retaining ‘intracellular’ Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.  相似文献   

16.
17.
Major histocompatibility complex genes (Mhc-DQB and Mhc-DRB) were sequenced in seven aye-ayes (Daubentonia madagascariecsis), which is an endemic and endangered species in Madagascar. An aye-aye from a north-eastern population showed genetic relatedness to individuals of a north-western population and had a somewhat different repertoire from another north-eastern individual. These observations suggest that the extent of genetic variation in Mhc genes is not excessively small in the aye-aye in spite of recent rapid destruction of their habitat by human activities. In light of Mhc gene evolution, trans-species and allelic polymorphisms can be estimated to have been retained for more than 50 Ma (million years) based on the time scale of lemur evolution.  相似文献   

18.
The distributions of Assamese macaques (Macaca assamensis) and rhesus macaques (M. mulatta) in Bhutan have been only partially documented. In order to investigate the distribution patterns of these species, we conducted field observation and genetic assessment with mitochondrial DNA (mtDNA) typing of macaques in the Inner Himalayas of Bhutan. There were 24 sightings of macaque groups, and all were visually identified as Assamese macaques. No groups of rhesus macaques were sighted in this survey area, in contrast with the survey results in the Nepalese Himalayas. Molecular phylogenetic analysis revealed that the Bhutan macaques are closer in proximity to their counterparts in the Indo-Chinese region (Thailand and Laos) than to rhesus macaques in China, Laos and India. However, clustering results suggested the marked differentiation of the macaques in Bhutan from the Assamese macaques in Indo-China. We tentatively conclude that the macaques of the Inner Himalayan regions in Bhutan are Assamese macaques and that they appear to be of a lineage distinct from Assamese macaques in the Indo-Chinese region (subspecies M. a. assamensis). The degree of mtDNA diversity suggests that the Assamese macaques in Bhutan are of a more ancient ancestry than M. a. assamensis, thereby supporting the speciation hypothesis of the expansion of a sinica-group of macaques from South Asia to Southeast and then to East Asia (Fooden; Fieldiana Zool 45:1–44, 1988). Assignment of Assamese macaques in Bhutan to M. a. pelops is premature due to the lack of molecular data and recent taxonomic controversy. The mtDNA diversity of Assamese macaques was greater than that of rhesus macaques, suggesting the earlier speciation of Assamese macaques. The significance of the ecogeographic segregation model of macaque distribution is discussed in relation to the evolutionary range expansion into the Himalayan regions in South Asia.  相似文献   

19.
  In both Old World and New World monkeys Mhc-DRB sequences have been found which resemble human DRB1*03 and DRB3 genes in their second exon. The resemblance is shared sequence motifs and clustering of the genes or the encoded proteins in phylogenetic trees. This similarity could be due to common ancestry, convergence at the molecular level, or chance. To test which of these three explanations applies, we sequenced segments of New World monkey and macaque genes which encompass the entire second exon and large parts of both flanking introns. The test strongly supports the monophyly of New World monkey DRB intron sequences. The phylogenies of introns 1 and 2 from DRB1*03-like and DRB3-like genes are congruent, but both are incongruent with the exon 2-based phylogeny. The matching of intron 1- and intron 2-based phylogenies with each other suggests that reciprocal recombination has not played a major role in exon 2 evolution. Statistical comparisons of exon 2 from different DRB1*03 and DRB3 lineages indicate that it was neither gene conversion (descent), nor chance, but molecular convergence that has shaped their characteristic motifs. The demonstration of convergence in anthropoid Mhc-DRB genes has implications for the classification, age, and mechanism of generation of DRB allelic lineages. Received: 30 August 1999 / Revised: 19 October 1999  相似文献   

20.
Identification of MHC class I sequences in Chinese-origin rhesus macaques   总被引:5,自引:5,他引:0  
The rhesus macaque (Macaca mulatta) is an excellent model for human disease and vaccine research. Two populations exhibiting distinctive morphological and physiological characteristics, Indian- and Chinese-origin rhesus macaques, are commonly used in research. Genetic analysis has focused on the Indian macaque population, but the accessibility of these animals for research is limited. Due to their greater availability, Chinese rhesus macaques are now being used more frequently, particularly in vaccine and biodefense studies, although relatively little is known about their immunogenetics. In this study, we discovered major histocompatibility complex (MHC) class I cDNAs in 12 Chinese rhesus macaques and detected 41 distinct Mamu-A and Mamu-B sequences. Twenty-seven of these class I cDNAs were novel, while six and eight of these sequences were previously reported in Chinese and Indian rhesus macaques, respectively. We then performed microsatellite analysis on DNA from these 12 animals, as well as an additional 18 animals, and developed sequence specific primer PCR (PCR-SSP) assays for eight cDNAs found in multiple animals. We also examined our cohort for potential admixture of Chinese and Indian origin animals using a recently developed panel of single nucleotide polymorphisms (SNPs). The discovery of 27 novel MHC class I sequences in this analysis underscores the genetic diversity of Chinese rhesus macaques and contributes reagents that will be valuable for studying cellular immunology in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号