首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaves of 15 - 30-d-old plants of sunflower and jute were harvested at 10.00 or 23.00 (local time) and measured immediately, or those harvested at 10.00 were incubated for one hour in sunlight either in water or 5 mM methionine sulfoximine (MSX) solution and then for three hours in dark either in water or 15 mM KNO3 solution. Nitrate feeding during dark incubation, in general, increased nitrate reductase (NR) and nitrite reductase (NiR) activities, and NADH and soluble sugar contents. Increase in tissue nitrate concentration in MSX fed but not in control samples suggested reduction of nitrate in dark. NADPH-dependent NR activity increased considerably upon feeding with nitrate in dark. Concomitantly, NADPH phosphatase activity was also increased in nitrate treated, dark incubated leaves. It is proposed that nitrate regulates dark nitrate reduction by facilitating generation of NADH from NADPH by NADPH phosphatase. High amounts of ammonia accumulated in MSX treated, but not in control leaves, upon dark incubation. Relative activities of NR and NADPH phosphatase, and amounts of soluble sugar and NADH were low in MSX fed samples compared to that of control. So, high amount of ammonia might partially repress NADPH phosphatase and consequently deprive NR of reducing equivalents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Enzymes from the pentose phosphate pathway (PPP) are potential drug targets for the development of new drugs against Trypanosoma brucei, the causative agent of African sleeping disease: for instance, the 6-phosphogluconate dehydrogenase is currently studied actively for such purposes. Structural and functional studies are necessary to better characterize the associated enzymes and compare them to their human homologues, in order to undertake structure-based drug design studies on such targets. In this context, the crystal structure of 6-phosphogluconolactonase (6PGL) from T. brucei, the second enzyme from PPP, was determined at 2.1 Angstroms resolution. Comparison of its sequence and structure to other related proteins in the 6PGL family with a known structure (Thermotoga maritima Tm6GPL 1PBT and Vibrio cholerae Vc6PGL (1Y89), which have not been discussed in print), or in the glucosamine-6-phosphate-deaminase family (hexameric Escherichia coli 1DEA and monomeric Bacillus subtilis 2BKV), allowed the identification of the 6PGL active site. In addition to the analysis of the crystal structure, 3D NMR interaction studies and docking experiments are reported here. Key residues involved in substrate binding or in catalysis were identified.  相似文献   

3.
D-核糖生产菌的选育   总被引:6,自引:1,他引:5  
将枯草芽胞杆菌通过紫外线诱变得到了莽草酸缺陷突变株,在28株突变株中有10株积累D-核糖。这些菌株均属戊糖磷酸途径的非氧化支路缺失突变株。对这些菌株的产核糖能力进行了验证、培养基中芳香族氨基酸的浓度影响D-核糖的积累  相似文献   

4.
Transketolase is a connecting link between glycolytic and pentose phosphate pathway, which is considered as the rate-limiting step due to synthesis of large number of ATP molecule and it can be proposed as a plausible target facilitating the growth of cancerous cells suggesting its potential role in cancer. Oxythiamine, an antimetabolite has been proved to be an efficient anticancerous compound in vitro, but its structural elucidation of the inhibitory mechanism has not yet been done against the human transketolase-like 1 protein (TKTL1). The three-dimensional (3D) structure of TKTL1 protein was modeled and subjected for refinement, stability and validation. Based on the reported homologs of transketolase (TKT), the active site residues His46, Ser49, Ser52, Ser53, Ile56, Leu82, Lys84, Leu123, Ser125, Glu128, Asp154, His160, Thr216 and Lys218 were identified and considered for molecular-modeling studies. Docking studies reveal the H-bond interactions with residues Ser49 and Lys218 that could play a major role in the activity of TKTL1. Molecular dynamics (MD) simulation study was performed to reveal the comparative stability of both native and complex forms of TKTL1. MD trajectory at 30?ns, confirm the role of active site residues Ser49, Lys84, Glu128, His160 and Lys218 in suppressing the activity of TKTL1. Glu128 is observed to be the most important residue for deprotonation state of the aminopyrimidine moiety and preferred to be the site of inhibitory action. Thus, the proposed mechanism of inhibition through in silico studies would pave the way for structure-oriented drug designing against cancer.  相似文献   

5.
The protective effects of fructose-1,6-biphosphate (FBP) during hypoxia/ischemia are thought to result from uptake and utilization of FBP as a substrate for glycolysis or from stimulation of glucose metabolism. To test these hypotheses, we measumed CO2 and lactate production from [6-14C]glucose, [1-14C]glucose, and [U-14C]FBP in normoxic and hypoxic cultured astrocytes with and without FBP present. FBP had little effect on CO2 production by glycolysis, but increased CO2 production by the pentose phosphate pathway. Labeled FBP produced very small amounts of CO2. Lactate production from [1-, and 6-14C]glucose increased similarly during hypoxic hypoxia; the increase was independent of added FBP. Labeled lactate from [U-14C]FBP was minimal. We conclude that exogenous FBP is not used by astrocytes as a substrate for glycolysis and that FBP alters glucose metabolism.  相似文献   

6.
Saccharomyces cerevisiae strains lacking phosphoglucose isomerase (pgi1) cannot use the pentose phosphate (PP) pathway to oxidize glucose, which has been explained by the lack of mechanism for reoxidation of the NADPH surplus. Consistent with this, the defective growth on glucose of a ENYpgi1 strain can be partially restored by expressing the Escherichia coli transhydrogenase udhA. In this work it was found that growth of V5 (wine yeast-derived) and FY1679 (isogenic to S288C) pgi1 mutants is not rescued by expression of udhA. Moreover, the flux through the PP pathway of 11 S. cerevisiae strains from various origins was estimated, by calculating the ratio between the enzymatic activity of the G6PDH and HXK, placed at the glycolysis-PP pathway branch point. The results show that ENY.WA-1A exhibited the highest ratio (1.5-3-fold) and the highest G6PDH activity. Overexpression of ZWF1 encoding the G6PDH in V5pgi1udhA did not rescue growth on glucose, suggesting that steps downstream the G6PDH might limit the PP pathway in this strain. As a whole, these data highlight a great intraspecies diversity in the PP pathway capacity among S. cerevisiae strains and suggest that a low capacity may be the prime limiting factor in glucose oxidation through this pathway.  相似文献   

7.
8.
肿瘤细胞的一大重要特征是代谢水平的改变。戊糖磷酸途径作为细胞产生NADPH和五碳糖的主要通路,在肿瘤发生发展过程中发挥着重要功能。转酮酶是戊糖磷酸途径中的关键酶之一,越来越多的研究表明其与癌症病人预后具有显著相关性。作为肿瘤诊断、治疗的潜在靶标,转酮酶具有重要的研究价值。我们就目前癌症研究中对转酮酶的研究进展做简要综述。  相似文献   

9.
The changes in the activity of the pentose phosphate cycle and the malic enzyme produced by the activation or inhibition of different NADPH-consuming pathways have been studied. The inhibition of the fatty acid synthesis by kynurenate produced a decrease in the flux through the pentose phosphate cycle and a diminution in the malic enzyme pathway. The incubation of the adipocytes in the presence of ter-butyl-hydroperoxide, a compound which is metabolized via a NADPH-consuming pathway, produced a big increase in the pentose phosphate cycle and the malic enzyme activities. The regulation of these NADPH-producing pathways by the NADPH/NADP ratio is discussed.  相似文献   

10.
Microalgae have long been considered as potential biological feedstock for the production of wide array of bioproducts, such as biofuel feedstock because of their lipid accumulating capability. However, lipid productivity of microalgae is still far below commercial viability. Here, a glucose‐6‐phosphate dehydrogenase from the oleaginous microalga Nannochloropsis oceanica is identified and heterologously expressed in the green microalga Chlorella pyrenoidosa to characterize its function in the pentose phosphate pathway. It is found that the G6PD enzyme activity toward NADPH production is increased by 2.19‐fold in engineered microalgal strains. Lipidomic analysis reveals up to 3.09‐fold increase of neutral lipid content in the engineered strains, and lipid yield is gradually increased throughout the cultivation phase and saturated at the stationary phase. Moreover, cellular physiological characteristics including photosynthesis and growth rate are not impaired. Collectively, these results reveal the pivotal role of glucose‐6‐phosphate dehydrogenase from N. oceanica in NADPH supply, demonstrating that provision of reducing power is crucial for microalgal lipogenesis and can be a potential target for metabolic engineering.  相似文献   

11.
The coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans was investigated. By investigation of the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the soluble fraction of G. oxydans, and cloning and expression of genes in Escherichia coli, it was found that both G6PDH and 6PGDH have NAD/NADP dual coenzyme specificities. It was suggested that the pentose phosphate pathway is responsible for NADH regeneration in G. oxydans.  相似文献   

12.
Exploiting the differential expression of genes for Calvin cycle enzymes in bundle-sheath and mesophyll cells of the C4 plant Sorghum bicolor L., we isolated via subtractive hybridization a molecular probe for the Calvin cycle enzyme d-ribulose-5-phosphate 3-epimerase (R5P3E) (EC 5.1.3.1), with the help of which several full-size cDNAs were isolated from spinach. Functional identity of the encoded mature subunit was shown by R5P3E activity found in affinity-purified glutatione S-transferase fusions expressed in Escherichia coli and by three-fold increase of R5P3E activity upon induction of E. coli overexpressing the spinach subunit under the control of the bacteriophage T7 promoter, demonstrating that we have cloned the first functional ribulose-5-phosphate 3-epimerase from any eukaryotic source. The chloroplast enzyme from spinach shares about 50% amino acid identity with its homologues from the Calvin cycle operons of the autotrophic purple bacteria Alcaligenes eutrophus and Rhodospirillum rubrum. A R5P3E-related eubacterial gene family was identified which arose through ancient duplications in prokaryotic chromosomes, three R5P3E-related genes of yet unknown function have persisted to the present within the E. coli genome. A gene phylogeny reveals that spinach R5P3E is more similar to eubacterial homologues than to the yeast sequence, suggesting a eubacterial origin for this plant nuclear gene.Abbreviations R5P3E d-ribulose-5-phosphate 3-epimerase - RPI ribose-5-phosphate isomerase - TKL transketolase - PRK phosphoribulokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - FBP fructose-1,6-bisphophatase - FBP fructose 1,6-bisphosphate - G6PDH glucose-6-phosphate dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - OPPP oxidative pentose phosphate pathway - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - FBA fructose-1,6-bisphophate aldolase - IPTG isopropyl -d-thiogalactoside - GST glutathione S-tranferase - PBS phosphate-buffered saline - TPI triosephosphate isomerase  相似文献   

13.
Expression of one specific isoform of plastidic glucose 6-phosphate dehydrogenase (G6PDH) was manipulated in transgenic tobacco. Antisense and sense constructs of the endogenous P2 form of G6PDH were used to transform plants under the control of the cauliflower mosaic virus (CaMV) 35S promotor. Recombinant plants with altered expression were taken through to homozygosity by selective screening. Northern analyses revealed substantial changes in the expression of the P2 form of G6PDH, with no apparent impact on the activity of the cytosolic isoenzyme. Analysis of G6PDH activity in chloroplasts showed that despite the large changes in expression of P2-G6PDH, the range of enzyme activity varied only from approximately 50 to 200% of the wild type, reflecting the presence of a second G6PDH chloroplastic isoform (P1). Although none of the transgenic plants showed any visible phenotype, there were marked differences in metabolism of both sense and antisense lines when compared with wild-type/control lines. Sucrose, glucose and fructose contents of leaves were higher in antisense lines, whereas in overexpressing lines, the soluble sugar content was reduced below that of control plants. Even more striking was the observation that contents of glucose 6-phosphate (Glc6P) and 6-phosphogluconate (6PG) changed, such that the ratio of Glc6P:6PG was some 2.5-fold greater in the most severe antisense lines, compared with those with the highest levels of overexpression. Because of the distinctive biochemical properties of P2-G6PDH, we investigated the impact of altered expression on the contents of antioxidants and the response of plants to oxidative stress induced by methyl viologen (MV). Plants with decreased expression of P2-G6PDH showed increased content of reduced glutathione (GSH) compared to other lines. They also possessed elevated contents of ascorbate and exhibited a much higher ratio of reduced:oxidised ascorbate. When exposed to MV, leaf discs of wild-type and overexpressing lines demonstrated increased oxidative damage as measured by lipid peroxidation. Remarkably, leaf discs from plants with decreased P2-G6PDH did not show any change in lipid peroxidation in response to increasing concentrations of up to 15 micro m MV. The results are discussed from the perspective of the role of G6PDH in carbohydrate metabolism and oxidative stress. It is suggested that the activity of P2-G6PDH may be crucial in balancing the redox poise in chloroplasts.  相似文献   

14.
15.
Glucose-6-phosphate dehydrogenase (G6PDH) is the key enzyme of the oxidative pentose phosphate pathway supplying reducing power (as NADPH) in non-photosynthesizing cells. We have examined in detail the redox regulation of the plastidial isoform predominantly present in Arabidopsis green tissues (AtG6PDH1) and found that its oxidative activation is strictly dependent on plastidial thioredoxins (Trxs) that show differential efficiencies. Light/dark modulation of AtG6PDH1 was reproduced in vitro in a reconstituted ferredoxin/Trx system using f-type Trx allowing to propose a new function for this Trx isoform co-ordinating both reductive (Calvin cycle) and oxidative pentose phosphate pathways.  相似文献   

16.
Transport of isoprenoid intermediates across chloroplast envelope membranes   总被引:2,自引:0,他引:2  
The common precursor for isoprenoid biosynthesis in plants, isopentenyl diphosphate (IPP), is synthesized by two pathways, the cytosolic mevalonate pathway and the plastidic 1-deoxy-D-xylulose 5-phosphate/methylerythritol phosphate (DOXP/MEP) pathway. The DOXP/MEP pathway leads to the formation of various phosphorylated intermediates, including DOXP, 4-hydroxy-3-methylbutenyl diphosphate (HMBPP), and finally IPP. There is ample evidence for metabolic cross-talk between the two biosynthetic pathways. The present study addresses the question whether isoprenoid intermediates could be exchanged between both compartments by members of the plastidic phosphate translocator (PT) family that all mediate a counter-exchange between inorganic phosphate and various phosphorylated compounds. Transport experiments using intact chloroplasts, liposomes containing reconstituted envelope membrane proteins or recombinant PT proteins showed that HMBPP is not exchanged between the cytosol and the chloroplasts and that the transport of DOXP is preferentially mediated by the recently discovered plastidic transporter for pentose phosphates, the xylulose 5-phosphate translocator. Evidence is presented that transport of IPP does not proceed via the plastidic PTs although IPP transport is strictly dependent on various phosphorylated compounds on the opposite side of the membrane. These phosphorylated trans compounds are, in part, also used as counter-substrates by the plastidic PTs but appear to only trans activate IPP transport without being transported.  相似文献   

17.
Autophagy is a conserved mechanism for controlling the degradation of misfolded proteins and damaged organelles in eukaryotes and can be induced by nutrient withdrawal, including serum starvation. Although differential acetylation of autophagy-related proteins has been reported to be involved in autophagic flux, the regulation of acetylated microtubule-associated protein 1 light chain 3 (LC3) is incompletely understood. In this study, we found that the acetylation levels of phosphotidylethanolamine (PE)-conjugated LC3B (LC3B-II), which is a critical component of double-membrane autophagosome, were profoundly decreased in HeLa cells upon autophagy induction by serum starvation. Pretreatment with lysosomal inhibitor chloroquine did not attenuate such deacetylation. Under normal culture medium, we observed increased levels of acetylated LC3B-II in cells treated with tubacin, a specific inhibitor of histone deacetylase 6 (HDAC6). However, tubacin only partially suppressed serum-starvation-induced LC3B-II deacetylation, suggesting that HDAC6 is not the only deacetylase acting on LC3B-II during serum-starvation-induced autophagy. Interestingly, tubacin-induced increase in LC3B-II acetylation was associated with p62/SQSTM1 accumulation upon serum starvation. HDAC6 knockdown did not influence autophagosome formation but resulted in impaired degradation of p62/SQSTM1 during serum starvation. Collectively, our data indicated that LC3B-II deacetylation, which was partly mediated by HDAC6, is involved in autophagic degradation during serum starvation.  相似文献   

18.
19.
20.
Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis   总被引:1,自引:0,他引:1  
In green tissues of plants under illumination, photosynthesis is the primary source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is utilized in reductive reactions such as carbon fixation and nitrogen assimilation. In non-photosynthetic tissues or under non-photosynthetic conditions, the oxidative pentose phosphate pathway contributes to basic metabolism as one of the major sources of NADPH. The first and committed reaction is catalyzed by glucose-6-phosphate dehydrogenase (G6PDH). We characterized the six members of the G6PDH gene family in Arabidopsis. Transit peptide analysis predicted two cytosolic and four plastidic isoforms. Five of the six genes encode active G6PDHs. The recombinant isoforms showed differences in substrate requirements and sensitivities to feedback inhibition. Plastidic isoforms were redox sensitive. One cytosolic isoform was insensitive to redox changes, while the other was inactivated by oxidation. The respective genes had distinct expression patterns that did not correlate with the activity of the proteins, implying a regulatory mechanism beyond the control of mRNA abundance. Two cytosolic and one plastidic isoform were detected in vivo using zymograms, and the respective genes were identified using T-DNA insertion lines. The activity of a plastidic isoform was detected in all tissues including photosynthetic tissues despite its sensitivity to reduction observed in vitro. Genomic data, gene expression, and in vivo enzyme activity data were integrated with in vitro biochemical data to propose in vivo roles for individual G6PDH isoforms in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号