首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Oblak E  Doughty MJ  Oblak L 《Tissue & cell》2002,34(4):283-295
Measurements of large numbers of feature sizes within defined domains (e.g. cell areas within cell-cell borders) can be a time-consuming activity, but automation that includes defining such domains has not be proven to be very reliable. Other alternatives are therefore needed, and the goal of the present studies was both to develop a semi-automated (interactive) measurement system for cell areas and to carefully compare the output to that obtained using a manual digitiser pad method. A particular interest was in the contribution made by the cell-cell border zones. Non-contact specular micrographs of central corneal endothelium were obtained from 20 white male adults, aged 40-60 years. An overlay of the endothelial image was generated manually, from which the areas of around 200 cells were measured manually with a digitiser pad and also by a computer-assisted scanning method. The pad data was typed into a spread sheet along with details of the number of cell apices (sides). The computerised analysis identified borders of the same cells on the overlay, reduced these borders to a minimum, and then assessed cell area by the pixel count along with the number of neighbouring cells (to give cell sides data). The average cell area was 393 +/- 28 and 422 +/- 29 microm(2) (mean+/-SD) by the digitiser pad and computer-based methods, respectively. The average areas for each cell type were 153, 270, 392, 519 and 685 microm(2) for 4-, 5-, 6-, 7- and 8-sided cells, respectively. Assessment of the relationship between cell area and the number of cell sides (area-side relationships) showed a highly significant and positive correlation (P<0.001; r(2)=0.865). Comparing the two methods, the average cell area was 7.5% higher in the computer scan method, and this is attributed to the fact that the contribution made by the cell borders (the para-cellular space) had been essentially eliminated. A proportional correction factor can be applied to add back the cell borders/intercellular space to the computerised output, and examples are given based on using the average data from digitiser pad for each cell type. In conclusion, a computer assisted method has been developed to simultaneously provide data on the variance in cell areas (polymegethism) and cell shape (pleomorphism) from overlays of 200 cells from human corneal endothelial images, with the cell border zone corrected to allow for a finite para-cellular space.  相似文献   

2.
The present study was undertaken to determine whether or not physical contact with the substratum is essential for the stimulatory effect of extracellular matrix (ECM) on corneal epithelial collagen synthesis. Previous studies showed that collagenous substrata stimulate isolated epithelia to produce three times as much collagen as they produce on noncollagenous substrate; killed collagenous substrata (e.g., lens capsule) are just as effective as living substrata (e.g., living lens) in promoting the production of new corneal stroma in vitro. In the experiments to be reported here, corneal epithelia were placed on one side of Nucleopore filters of different pore sizes and killed lens capsule on the other, with the expectation that contact of the reacting cells with the lens ECM should be limited by the number and size of the cell processes that can tranverse the pores. Transfilter cultures were grown for 24 h in [3H]proline-containing median and incorporation of isotope into hot trichloroacetic acid-soluble protein was used to measure corneal epithelial collagen production. Epithelial collagen synthesis increases directly as the size of the pores in the interposed filter increases and decreases as the thickness of the filter layer increases. Cell processes within Nucleopore filters were identified with the transmission electron microscope with difficulty; with the scanning electron microscope, however, the processes could easily be seen emerging from the undersurface of even 0.1-mum pore size filters. Morphometric techniques were used to show that cell surface area thus exposed to the underlying ECM is linearly correlated with enhancement of collagen synthesis. Epithelial cell processes did not pass through ultrathin (25-mum thick) 0.45-mum pore size Millipore filters nor did "induction" occur across them. The results are discussed in relation to current theories of embryonic tissue interaction.  相似文献   

3.
Cell surface changes during preimplantation development in the mouse   总被引:4,自引:0,他引:4  
Scanning electron microscopy reveals microvilli on all preimplantation stages, indicates that their number and length may be dependent on embryo size, and provides examples of regional alterations in their number. Cellular adherence, as evidence by interactions of microvilli, migration of cellular processes, and junctional complexes, increases during development and is accompanied by changes in the shapes of cells and embryos. Cell surfaces bordering the blastocoel differ markedly from the outer cell surfaces of the embryo.  相似文献   

4.
The purpose of this study was to develop a procedure to quantitatively examine corneal epithelial apical cell membrane-associated glycoconjugates. Saccharide moieties on young, mature, and aged corneal epithelial cells were detected and localized in corneas of immature and adult mice by using colloidal gold-labeled lectins and transmission electron microscopy (TEM). In general, dense binding to the corneal epithelial apical surface cell membranes with wheat germ agglutinin (WGA) was seen in the adult, whereas the immature cornea bound less WGA-gold. Neuraminidase digestion decreased binding of the conjugate on epithelial plasma membranes of young and mature cells in adult cornea. Lectin-gold binding was decreased in the immature cornea on mature and aged cells. WGA-gold binding after neuraminidase was elevated on young cells of immature and on aged cells of adult animals. No binding of peanut agglutinin (PNA) or horse gram agglutinin (DBA) to the corneal epithelial surface was seen in animals of either age. After neuraminidase digestion, PNA binding sites were exposed only on the adult corneal surface. These data suggest that a terminal trisaccharide sequence, sialic acid-galactose beta(1----3)-N-acetylgalactosamine, is present at the adult corneal surface but is absent or at undetectable levels at the corneal surface of the immature animal. These data may be of significance in light of the dissimilar pattern of P. aeruginosa recognition and binding to the immature vs adult corneal epithelium.  相似文献   

5.
ELECTRON MICROSCOPE STUDIES OF THE MICROVILLI OF HELA CELLS   总被引:4,自引:2,他引:2       下载免费PDF全文
Microvilli of HeLa cells cultured in vitro were preserved for electron microscopic examination at different stages of routine cultivation procedures. By a double-embedding technique, vertical sectioning for electron microscopy was possible. It revealed that, although the microvilli were present on all sides of the cell in the dispersed stage and in the attached stage, they were not present on the bottom of the cell when it was stretched on the surface of the dish. When the cells were grown in dense colonies, they were found on top of each other, and microvilli were present on all sides, except on the bottom surface of those cells in contact with the dish. We achieved a more dramatic demonstration of the microvilli by developing a surface-replica technique which retains their spatial arrangement and permits characterization of the distribution of their number, length, and diameter.  相似文献   

6.
Lectin-binding sites on the muscle cell surface of an ascidian embryo were studied using the ferritin labeling technique. The embryos at 4-cell, gastrula, late tail-bud, and larval stages were dissociated in the Ca2+- and Mg2+-free solution with or without collagenase. Dissociated cells and fragments were prefixed, reacted with ferritin-lectin conjugates and processed for electron microscopy. Lectins used were concanavalin A (ConA) and Ricinus communis agglutinin. Ferritin particles showing lectin-binding sites were found singly or in the form of clusters on the cell surface exposed directly to the conjugates. Most of the particles of both conjugates were distributed singly and sparsely on entire surface areas of the 4-cell stage cells, whereas they were rich in population and tended to form clusters when embryos reached the gastrula stage. At the succeeding stages tested, tagged ferritin, which was single or clustering particles, was less in number as compared with those at the former stage; on the surface facing neighboring muscle cells, in particular, the ferritin particles were much fewer than those in areas of notochordal and epithelial sides. It is suggested that the embryonic muscle cells of the ascidian show stage-specific changes of cell surface carbohydrates. They have high reactivity to both lectins around the gastrula stage and bring out the regional difference of both lectin-binding sites in the tail-bud stage, namely during the period of histogenesis.  相似文献   

7.
The anterior surface of the mammalian cornea plays an important role in maintaining a smooth optical interface and consequently a sharp retinal image. The smooth surface is produced by a tear film, which adheres to a variety of microprojections, which increase the cell surface area, improve the absorbance of oxygen and nutrients and aid in the movement of metabolic products across the outer cell membrane. However, little is known of the structural adaptations and tear film support provided in other vertebrates from different environments. Using field emission scanning electron microscopy; this study examines the density and surface structure of corneal epithelial cells in representative species of the classes Cephalaspidomorphi, Chondrichthyes, Osteichthyes, Amphibia, Reptilia, Aves and Mammalia, including some Marsupialia. Variations in cell density and the structure and occurrence of microholes, microridges, microplicae and microvilli are described with respect to the demands placed upon the cornea in different aquatic environments such as marine and freshwater. A progressive decrease in epithelial cell density occurs from marine (e.g. 29348 cells mm(-2) in the Dover sole Microstomius pacficus) to estuarine or freshwater (e.g. 5999 cells mm(-2) in the black bream Acanthopagrus butcheri) to terrestrial (e.g. 2126 cells mm(-2) in the Australian koala Phascolarctos cinereus) vertebrates, indicating the reduction in osmotic stress across the corneal surface. The microholes found in the Southern Hemisphere lampreys, namely the pouched lamprey (Geotria australis) and the shorthead lamprey (Mordacia mordax) represent openings for the release of mucus, which may protect the cornea from abrasion during their burrowing phase. Characteristic of marine teleosts, fingerprint-like patterns of corneal microridges are a ubiquitous feature, covering many types of sensory epithelia (including the olfactory epithelium and the oral mucosa). Like microplicae and microvilli, microridges stabilize the tear film to maintain a smooth optical surface and increase the surface area of the epithelium, assisting in diffusion and active transport. The clear interspecific differences in corneal surface structure suggest an adaptive plasticity in the composition and stabilization of the corneal tear film in various aquatic environments.  相似文献   

8.
The development of the basement membrane and collagen fibrils below placodes, including the corneal region of the ectoderm, lens epithelium, nasal plate, and auditory vesicle in anuran larvae was observed by transmission electron microscopy and compared with that in nonplacodal regions such as the epidermis, neural tube, and optic vesicle. In the corneal region the lamina densa becomes thick concomitantly with the development of the connecting apparatuses such as hemidesmosomes and anchoring fibrils. The collagen fibrils increase in number and form a multilayered structure, showing similar morphology to the connective tissues below the epidermis. These two areas, i.e., the corneal region and epidermis, possess much collagenous connective tissue below them. On the other hand, the neural tube and ophthalmic vesicle that originated from the neural tube each have a thin lamina densa and a small number of underlying collagen fibrils. The lamina densa does not thicken and the number of collagen fibrils do not significantly increase during development. These two areas possess little extracellular matrix. The nasal plate and auditory vesicle show intermediate characteristics between the epidermis-type and the neural tube-type areas. In these areas, the lamina densa becomes thick and hemidesmosomes and anchoring fibrils develop. The number of collagen fibrils increases during development, but does not show an orderly arrangement; rather, they are randomly distributed. It is thought that the difference in the arrangement of collagen fibrils in different tissues is due to differences in the extracellular matrix around the collagen fibrils. Placodal epithelia have the same origin as epidermis, but during development their morphological characteristics differ and they are not associated with the pattern of extracellular matrix with characteristics of epidermal and corneal multilayered collagen fibril areas.  相似文献   

9.

Background and Objectives

The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs) are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium.

Methodology/Principal Findings

Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2), membrane type 1-MMP (MT1-MMP) and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime.

Conclusions/Significance

MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and activation, tight junction protein cleavage, and subsequent surface cell desquamation and renewal may be orchestrated by nocturnal circadian signals.  相似文献   

10.
The pathway of directional movement of chick precardiac mesoderm cells was studied by indirect immunofluorescence and by scanning electron microscopy. Directional movement of the precardiac cells begins at stage 6 from the lateral sides of the embryo at the level of Hensen's node. The cells move anteriorly in an arc to the embryo's midline. By stage 8 the cells arrive at the lateral sides of the anterior intestinal portal and movement ceases. The interval of this directional movement is approximately 10 hr. During migration the precardiac cells are in close association with the underlying endoderm. As migration proceeds, the cells encounter increasing amounts of fibrils in the substratum at the mesoderm-endoderm interface. Concomitant with increasing fibril formation there is an increase in fibronectin (FN) in the heart-forming region. During stage 5 FN first appears in the lateral heart-forming regions and increases in amount during the period of cell migration. By stage 7 a concentration difference of FN is apparent in the lateral regions with more FN cephalad and decreasing amounts caudad. At stages 7 and 8 large amounts of extracellular FN-associated fibrils are observed at the lateral sides of the anterior intestinal portal where the cells stop moving. The precardiac cells moving into this region are oriented perpendicular to the anterior intestinal portal and in close association with these fibrils. There is no evidence that the fibrillar meshwork forming the substratum of the precardiac mesoderm cells is physically oriented as a guide for directional movement. The correlations between FN distribution at the mesoderm-endoderm interface and directional cell movement suggest that the precardiac cells may migrate by haptotaxis, i.e., by moving along the substratum toward areas of greater adhesiveness.  相似文献   

11.
Summary A growing number of studies on the mechanism of leukocyte transendothelial migration use endothelial cells grown on microporous filters as an in vitro model of endothelium. Ultrastructural examination of such a model system previously demonstrated that human pulmonary artery endothelial cells (HPAEC) formed confluent monolayers on both sides of the 3-μm-pore filter (Mackarel et al., 1999). To determine whether this was a characteristic specific to pulmonary artery endothelial cells, the growth characteristics of a human pulmonary microvascular endothelial cell type (HMVEC-L) and the widely used human umbilical vein endothelial cells (HUVEC) on 3-μm microporous filters were examined by transmission electron microscopy (TEM). Similar to HPAEC, HMVEC-L and HUVEC were also found to grow on both sides of the filter. All three endothelial cell types were capable of migrating through the 3 μm pores of the filter to form a monolayer on the filter underside. The endothelial cells on the underside were orientated in an inverted position with the luminal surface facing away from the filter. Such ‘bilayer’ formation was observed at a range of seeding densities and in different culture media. Despite the presence of a bilayer of endothelial cells, TEM demonstrated that neutrophils migrated successfully across the cell-filter-cell system. Previous transmigration reports in which an in vitro model similar to ours was used have often assumed only one layer of endothelial cells. The observations reported here indicate that while endothelial cells on microporous filters are useful models for examining leukocyte-endothelial interactions, they are not appropriate for studies examining endothelial cell ‘sidedness.’  相似文献   

12.
Summary The existence of structural asymmetries has been quantitatively demonstrated in the crayfish compound eye. Variations in the size of the rhabdomes and corneal facets, as well as the size and extent of the accessory reflecting pigment cells, have been found. It was determined that the mean rhabdome diameter within a 70° arc in the dorsal quadrant of the retina is 11–19% smaller than the mean rhabdome diameter in the remaining areas of the eye. Also, the extent of the accessory reflecting pigment cells is diminished over an area corresponding generally to the dorsal region of smaller rhabdomes. Corneal facet size and shape vary over the surface of the cornea, with smaller facets occurring in the dorsal region. Both the mean rhabdome diameter and the mean corneal facet area for whole eyes increases linearly in animals ranging in size from 3.9–12 cm. The estimated number of corneal facets, and therefore the number of rhabdomes, increases from an average of 4700 in the 3–6.9 cm size range to about 6000 in 7–12 cm animals. These data indicate that structural asymmetries and various size-related parameters exist in the crayfish eye and should be considered in any quantitative analysis of this structure.Supported by a grant from the National Science Foundation (BNS 80-04587)  相似文献   

13.
To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium containing chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride,culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sulfate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to confluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical researches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.  相似文献   

14.
To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium con- taining chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sul- fate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to con- fluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical re- searches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.  相似文献   

15.
The external surface of the cornea and adjacent epidermis of larvae in representative developmental stages and of adult frogs, Rana pipiens, was studied by scanning electron microscopy. Surface cells are polygonal, usually hexagonal, in outline and covered with microprojections. During larval development prior to metamorphic stages, neither eyelids nor Harderian glands have developed; microprojections on the corneal surface are high and branched, and cell boundaries are elevated. On the anterior portion of the cornea and on the epidermis near the eye, the surface pattern is less dense, and ciliated cells are present. During metamorphic stages, corneal cell boundaries become less prominent and the pattern of microprojections more variable and markedly different from that of larvae of earlier stages. Corneal cells have a spongy appearance, are covered by a coating material, or are characterized as light or dark based on their brightness and surface texture. As eyelids develop in metamorphic stages XX–XXI, the numbers of ciliated cells increase dramatically, both on the corneal surface and on the edges of the developing lids. In later metamorphic stages XXII–XXV, lids and Harderian glands become well-developed, and cilia are no longer observed. The adjacent epidermal surface becomes devoid of cilia but perforated by openings of cutaneous glands. Its spongy appearance is similar to that of both the cornea and neighboring epidermis of the mature frog. Changes in corneal surface features are probably metamorphic events associated with development of lids and Harderian glands and a shift from an aqueous to an air environment.  相似文献   

16.
Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.  相似文献   

17.
The localization of anionic sites on the surface of corneal endothelium was investigated using colloidal nickel. The distribution of the binding sites of colloidal nickel along the cell surface was examined with the scanning electron microscope. The application a special detector of high sensitivity reflection allows to register a composed contrast determined by colloidal nickel. Colloidal nickel is bound with the surface of endothelium in areas of cell junctions only. A 1 X 10(-4)% sol. adrenaline injection into the anterior rabbit eye chamber in vivo changed the distribution of colloidal nickel. These findings demonstrate that colloidal nickel allows to mark the anionic sites on the cell surface for scanning electron microscopic studies.  相似文献   

18.
《The Journal of cell biology》1984,99(6):2024-2033
The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments.  相似文献   

19.
Summary The cement gland was studied from stage 17, when the anlage is established, to stage 49, shortly before its disappearance. At early stages, the apical membrane is covered by small microvilli that are more abundant than in the surrounding epiblast cells. Vesicular protrusions along the cell boundaries are also more numerous in the gland cells.When the gland reaches maturity, the apical membranes of gland cells differentiate into two regions. In the cranial, kidney-shaped region, the membranes are very narrow and protrude above the level of cell boundaries. Long and slender villi raise from the surface adjacent to cell boundaries. Apical surfaces in the caudal portion are larger and flattened. Cell boundaries are lined with shorter and thicker surface projections. At these stages, the bordering cells are covered with secretion vesicles.During involution the number of cells is progressively reduced. The area of the caudal portion increases relative to the area of the cranial portion. Apical surfaces become more flattened. Surface projections become much shorter and invade the whole of the apical surface. Bordering cells lose their secretion vesicles and their apical surface becomes ruffled with numerous short wrinkles. The significance of the apical structures and their evolution is discussed.  相似文献   

20.
In corneal endothelium, there is evidence for basolateral entry of HCO(3)(-) into corneal endothelial cells via Na(+)-HCO(3)(-) cotransporter (NBC) proteins and for net HCO(3)(-) flux from the basolateral to the apical side. However, how HCO(3)(-) exits the cells through the apical membrane is unclear. We determined that cultured corneal endothelial cells transport HCO(3)(-) similarly to fresh tissue. In addition, Cl(-) channel inhibitors decreased fluid transport by at most 16%, and inhibition of membrane-bound carbonic anhydrase IV by benzolamide or dextran-bound sulfonamide decreased fluid transport by at most 29%. Therefore, more than half of the fluid transport cannot be accounted for by anion transport through apical Cl(-) channels, CO(2) diffusion across the apical membrane, or a combination of these two mechanisms. However, immunocytochemistry using optical sectioning by confocal microscopy and cryosections revealed the presence of NBC transporters in both the basolateral and apical cell membranes of cultured bovine corneal endothelial cells and freshly isolated rabbit endothelia. This newly detected presence of an apical NBC transporter is consistent with its being the missing mechanism sought. We discuss discrepancies with other reports and provide a model that accounts for the experimental observations by assuming different stoichiometries of the NBC transport proteins at the basolateral and apical sides of the cells. Such functional differences might arise either from the expression of different isoforms or from regulatory factors affecting the stoichiometry of a single isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号