首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the temporal variability and resistance to perturbation of the biomass production of grassland communities from an experimental diversity gradient (the Portuguese BIODEPTH project site). With increasing species richness relative temporal variability (CV) of plant populations increased but that of communities decreased, supporting the insurance hypothesis and related theory. Species‐rich communities were more productive than species‐poor communities in all three years although a natural climatic perturbation in the third year (frequent frost and low precipitation) caused an overall decrease in biomass production. Resistance to this perturbation was constant across the experimental species richness gradient in relative terms, supporting a similar response from the Swiss BIODEPTH experiment. The positive biomass response was generated by different combinations of the complementarity and selection effects in different years. Complementarity effects were positive across mixtures on average in all three years and positively related to diversity in one season. The complementarity effect declined following perturbation in line with total biomass but, counter to predictions, in relative terms overyielding was maintained in all years. Selection effects were positively related to diversity in one year and negative overall in the other two years. The response to perturbation varied among species and for the same species growing in monoculture and mixture, but following the frost communities were more strongly dominated by species with lower monoculture biomass and the selection effect was more negative. In total, our results support previous findings of a positive relationship between diversity and productivity and between diversity and the temporal stability of production, but of no effect of diversity on the resistance to perturbation. We demonstrate for the first time that the relative strength of overyielding remained constant during an exceptional natural environmental perturbation.  相似文献   

2.
Global biodiversity losses provide an immediate impetus to elucidate the relationships between biodiversity, productivity and stability. In this study, we quantified the effects of species richness and species combination on the productivity and stability of phytoplankton communities subject to predation by a single rotifer species. We also tested one mechanism of the insurance hypothesis: whether large, slow-growing, potentially-defended cells would compensate for the loss of small, fast-growing, poorly-defended cells after predation. There were significant effects of species richness and species combination on the productivity, relative yield, and stability of phytoplankton cultures, but the relative importance of species richness and combination varied with the response variables. Species combination drove patterns of productivity, whereas species richness was more important for stability. Polycultures containing the most productive single species, Dunaliella, were consistently the most productive. Yet, the most species rich cultures were the most stable, having low temporal variability in measures of biomass. Polycultures recovered from short-term negative grazing effects, but this recovery was not due to the compensation of large, slow-growing cells for the loss of small, fast-growing cells. Instead, polyculture recovery was the result of reduced rotifer grazing rates and persisting small species within the polycultures. Therefore, although an insurance effect in polycultures was found, this effect was indirect and unrelated to grazing tolerance. We hypothesize that diverse phytoplankton assemblages interfered with efficient rotifer grazing and that this “interference effect” facilitated the recovery of the most productive species, Dunaliella. In summary, we demonstrate that both species composition and species richness are important in driving patterns of productivity and stability, respectively, and that stability in biodiverse communities can result from an alteration in consumer functioning. Our findings underscore the importance of predator-prey dynamics in determining the relationships between biodiversity, productivity and stability in producer communities.  相似文献   

3.
We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing productivity could not be attributed to a relative increase of highly productive species. Instead, the increase appeared to be caused by the increased performance of several low‐productive species. Our results provide evidence that niche complementarity can strongly increase productivity in grasslands, although the communities contained only grasses and forbs.  相似文献   

4.
Plant–soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4‐year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity–productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on “home” than on “away” soils. Nine‐species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%–29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.  相似文献   

5.
We tested the hypothesis that biodiversity decreases the spatial variability of biomass production between subplots taken within experimental grassland plots. Our findings supported this hypothesis if functional diversity (weighted Rao's Q ) was considered. Further analyses revealed that diversity in rooting depth and clonal growth form were the most important components of functional diversity stabilizing productivity. Using species or functional group richness as diversity measures there was no significant effect on spatial variability of biomass production, demonstrating the importance of the biodiversity component considered. Moreover, we found a significant increase in spatial variability of productivity with decreasing size of harvested area, suggesting small-scale heterogeneity as an important driver. The ability of diverse communities to stabilize biomass production across spatial heterogeneity may be due to complementary use of spatial niches. Nevertheless, the positive effect of functional diversity on spatial stability appears to be less pronounced than previously reported effects on temporal stability.  相似文献   

6.
资源互补效应对多样性-生产力关系的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
许多有关物种多样性-生态系统功能关系的观察、理论和实验研究都表明, 在局域尺度范围内, 植物种多样性对生态系统生产力存在正效应。 然而, 对于促成这种关系的潜在生态学机制却缺乏足够的了解。 该实验利用9种一年生栽培牧草, 采用各物种单播及混播的方法, 构建不同多样性梯度的实验群落, 对物种多样性与生态系统生产力的关系及资源互补效应对系统生产力的影响进行了研究。 结果表明, 在一年生植物群落内,植物种多样性在一定程度内对系统生产力存在正效应, 物种多样性与生产力呈二次函数关系, 关系式为y = -98.449x2 + 1 039.2 x - 42.407, (R2 = 0.423 1)。 各物种在资源利用、生长速度和竞争能力等功能特征方面存在较大差异, 最高产物种和最低产物种间产量相差5.8倍。 在同一多样性梯度内, 不同物种组合的群落间生产力和互补效应也存在较大差异, 说明物种的成分对生态系统生产力也有重要影响。 同时,在混播群落中程度不同地存在着资源的互补性利用, 说明物种多样性对系统生产力有增强作用, 但相关分析表明, 互补效应和物种多样性间不存在显著相关关系。互补效应的4种计算方法所反映的资源互补程度有所不同, 每种方法各有利弊, 在对系统的多样性效应作用机制进行评价时, 应根据具体情况, 同时采用几种方法, 以利于对资源互补效应做出恰当的估测。  相似文献   

7.
Diversity is one major factor driving plant productivity in temperate grasslands. Although decomposers like earthworms are known to affect plant productivity, interacting effects of plant diversity and earthworms on plant productivity have been neglected in field studies. We investigated in the field the effects of earthworms on plant productivity, their interaction with plant species and functional group richness, and their effects on belowground plant competition. In the framework of the Jena Experiment we determined plant community productivity (in 2004 and 2007) and performance of two phytometer plant species [Centaurea jacea (herb) and Lolium perenne (grass); in 2007 and 2008] in a plant species (from one to 16) and functional group richness gradient (from one to four). We sampled earthworm subplots and subplots with decreased earthworm density and reduced aboveground competition of phytometer plants by removing the shoot biomass of the resident plant community. Earthworms increased total plant community productivity (+11%), legume shoot biomass (+35%) and shoot biomass of the phytometer C. jacea (+21%). Further, phytometer performance decreased, i.e. belowground competition increased, with increasing plant species and functional group richness. Although single plant functional groups benefited from higher earthworm numbers, the effects did not vary with plant species and functional group richness. The present study indicates that earthworms indeed affect the productivity of semi-natural grasslands irrespective of the diversity of the plant community. Belowground competition increased with increasing plant species diversity. However, belowground competition was modified by earthworms as reflected by increased productivity of the phytometer C. jacea. Moreover, particularly legumes benefited from earthworm presence. Considering also previous studies, we suggest that earthworms and legumes form a loose mutualistic relationship affecting essential ecosystem functions in temperate grasslands, in particular decomposition and plant productivity. Further, earthworms likely alter competitive interactions among plants and the structure of plant communities by beneficially affecting certain plant functional groups.  相似文献   

8.
We studied the effect of productivity on competition intensity and the relationship between competition intensity and community species richness, using a removal experiment with the perennial plant Solidago virgaurea . The experiment was conducted in 16 different communities from two geographically distant areas (western Estonia and northern Norway). The results were compared with the results of previous experiments with Anthoxanthum odoratum from the same areas. Removal of neighbors had a positive effect on the biomass of both Solidago and Anthoxanthum , and this response was stronger in communities with higher productivity. Thus, the corrected index of relative competition intensity, CRCI, increased with increasing community productivity. Species richness was negatively correlated with CRCI in Estonia but not in Norway and not in the case of the pooled material. The results suggest that competitive exclusion operates at least in these communities which species pool is large.
Our results indicate that the relationship between competition intensity and productivity is non-linear. In our data, competition prevails in communities where living plant biomass exceeds 200 g m−2, whereas in less productive communities, competition remains undetected and direct plant–plant relationships might at times be even mutualistic. Moreover, we found that the relationship between competition intensity and productivity is strongly dependent on regional differences and is intimately connected to a concordant variation in the intensity of grazing. The least productive communities both in Estonia and in Norway are characterized by intensive grazing, which reduces importance of competition. Hence, the contrasting results corroborates the predictions of the hypothesis of exploitation ecosystems, predicting that trophic dynamics account for the relationship between competition intensity and primary productivity.  相似文献   

9.
对不同类型草地功能群多样性和组成与植物群落生产力之间的关系进行了探讨。结果表明:(1)在矮嵩草(Kobresia humlis)草甸和金露梅(Potentilla froticosa)灌丛中,豆科植物的作用比较明显,而其他功能群植物的作用较弱。(2)在藏嵩草(Kobresia tibetica)沼泽化草甸和小嵩草(K.pygmaca)草甸中,虽然杂类草、C3植物和莎草科植物功能群的生产力占群落初级生产力的比例较大,但二者在统计上没有显著性差异,这表明群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响,更主要的是受到功能群内物种密度和均匀度的影响,即功能群组成比功能群多样性更能说明对生态系统过程的影响。(3)不同类型草地群落植物功能群盖度与群落初级生产力呈显著的线性相关。(4)不同类型草地群落生产力与功能群内物种数的变化均表现为单峰曲线关系,即功能群内物种数处于中间水平时,群落生产力最高。  相似文献   

10.
We derive and test some assumptions and predictions of the Sampling Effect Hypothesis (SEH) by examining the relationship between the traits of species in monoculture and their relative abundance in mixture, and by comparing polyculture performance with single-species plots. Although we found a positive relationship between production in monoculture and dominance in mixtures as predicted by the SEH, the relationship had low explanatory power. Counter to predictions, the species with the highest monoculture biomass were not able to strongly dominate all mixtures; instead the dominance of these species decreased with increasing species richness. On average, polycultures did not achieve greater biomass than (transgressively overyield) the species in each mixture, or at each site, that was most productive in monoculture. However, mixture yields did transgressively overyield both the monoculture biomass of the dominant species in the mixtures, and the weighted average of all monocultures (non-transgressive overyielding), both of which were positively related to increasing species richness. The varying responses of different overyielding tests resulted because resource partitioning and positive interactions were often counter-balanced by selection for species with lower biomass than the highest-yielding monocultures. Judging whether or not mixtures overyield therefore depends in part upon which species is the basis for comparison. We present a new general framework for overyielding analysis where every monoculture provides a potential comparison and from which the most relevant tests can be selected.  相似文献   

11.
Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental productivity gradient in a generally harsh climate. We hypothesised that the importance of competition would be higher in more productive sites. Location. Mt. M. Khatipara (43°27′N, 41°41′E, altitude 2750 m), NW Caucasus, Russia. Communities ranged from low‐productivity alpine lichen heath (ALH) and snowbed communities (SBC), to intermediate productivity Festuca grassland (FVG), and high‐productivity Geranium‐Hedysarum meadow (GHM). Methods. We quantified the relative influence of competition and facilitation on community structure by expressing biomass of target species within each natural community proportionally to biomass of the species in a “null community” with experimental release from interspecific competition by removing all other species (for 6 years). An overall index of change in community composition due to interspecific interactions was calculated as the sum of absolute or proportional differences of the component species. Results. Species responses to neighbour removal ranged from positive to neutral. There was no evidence of facilitation among the selected dominant species. As expected, competition was generally most important in the most productive alpine community (GHM). The intermediate position for low‐productivity communities of stressful environments (ALH, SBC) and the last position of intermediately productive FVG were unexpected. Conclusions. Our results appear to support the Fretwell‐Oksanen hypothesis in that competition in communities of intermediate productivity was less intense than in low‐ or high‐productive communities. However, the zero net effect of competition and facilitation in FVG might be the result of abiotic stress due to strong sun exposure and high soil temperatures after neighbour removal. Thus, non‐linear relationships between soil fertility, productivity and different abiotic stresses may also determine the balance between competition and facilitation.  相似文献   

12.
许多研究探索了与全球变化相关的生态系统功能的变化,但对生态系统功能变化的机制与途径了解较少。初级生产力是生态系统功能的重要组分,但关于氮(N)添加下荒漠草原植物群落初级生产力如何变化以及变化机制尚未明确,N是否通过影响生物多样性来影响荒漠草原初级生产力?为此,本研究在荒漠草原开展了为期4年的N添加控制实验(2018—2021年),试验处理包括对照和4个N添加水平(5、10、20和40 g m-2 a-1),研究了N添加对荒漠草原物种多样性、功能多样性、初级生产力及其关系的影响。结果表明:(1)N添加处理(2018—2021年)改变了植物物种多样性及功能多样性,但年际间变化趋势不同。N添加处理第四年(2021年)荒漠草原植物功能多样性(Rao指数)、群落加权平均值-株高、功能均匀度和功能离散度均显著增加,而荒漠草原植物物种丰富度和Shannon-Wiener指数均显著降低。(2)N添加可以通过影响物种丰富度和功能多样性进而间接地促进荒漠草原初级生产力,但群落加权性状值-株高对初级生产力的影响是正效应,而物种丰富度和功能离散度对初级生产力的影响是...  相似文献   

13.
《Acta Oecologica》2006,29(1):85-96
Species and functional group (grasses, legumes, creeping nonlegume forbs, rosette nonlegume forbs) richness of species assemblages composed of 16 species from four functional plant groups were manipulated to evaluate the productivity-diversity relationships in a greenhouse pot experiment. Pots were filled with sand, and supplied at two levels of nutrients. The plants were grown in monocultures, two, four, eight and 16 species mixtures. Individual two, four, and eight species mixtures differed in the richness of functional groups. Although the two characteristics of biodiversity, i.e. species and functional group richness, were necessarily correlated, it was shown that it is possible to separate their effect statistically, and also test for their common effect without pronounced loss of test power. There was a pronounced increase of average aboveground biomass and a mild increase in belowground biomass with biodiversity. The effect of functional group richness was more pronounced than the effect of the number of species. By using the method of Loreau and Hector (Nature 411 (2001) 72), selection and complementarity effects were statistically separated, and the overyielding index was calculated as a ratio of the productivity of a mixture to the productivity of its most productive component (to demonstrate transgressive overyielding). Positive values of complementarity and transgressive overyielding were both found, particularly in some rich communities and under high nutrient levels. Complementarity significantly increased only with functional group richness and mainly under high nutrients in the belowground biomass. Some species, when grown in monocultures, had decreased productivity under higher nutrients, and thus were more productive in mixtures than in monocultures. It seems that those species suffered from too high nutrient levels when grown in monocultures, but not in the presence of other species, which were able to use the nutrients in high concentrations and effectively decrease the nutrient levels. As a consequence, mixtures of high diversity were always more productive under high nutrients. The difference in species proportions between high and low nutrients, characterized by chord distance, increased with species richness. The relative change in productivity decreased with the number of functional groups. This suggests that species richness might lead to stabilization of aggregate characteristics (like total productivity) under changing environmental conditions by changing the proportions of individual species.  相似文献   

14.
Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals.  相似文献   

15.
Bonkowski M  Roy J 《Oecologia》2005,143(2):232-240
A gradient of microbial diversity in soil was established by inoculating pasteurized soil with microbial populations of different complexity, which were obtained by a combination of soil fumigation and filtering techniques. Four different soil diversity treatments were planted with six different grass species either in monoculture or in polyculture to test how changes of general microbial functions, such as catabolic diversity and nutrient recycling efficiency would affect the performance of the plant communities. Relatively harsh soil treatments were necessary to elicit visible effects on major soil processes such as decomposition and nitrogen cycling due to the high redundancy and resilience of soil microbial communities. The strongest effects of soil diversity manipulations on plant growth occurred in polycultures where interspecific competition between plants was high. In polycultures, soil diversity reduction led to a gradual, linear decline in biomass production of one subordinate grass species (Bromus hordeaceus), which was compensated by increased growth of two intermediate competitors (Aegilops geniculata, B. madritensis). This negative covariance in growth of competing grass species smoothed the effects of soil diversity manipulations at the plant community level. As a result, total shoot biomass production remained constant. Apparently the effects of soil diversity manipulations were buffered because functional redundancy at both, the microbial and the plant community level complemented each other. The results further suggests that small trade-offs in plant fitness due to general functional shifts at the microbial level can be significant for the outcome of competition in plant communities and thus diversity at much larger scales.  相似文献   

16.
Plant biodiversity can enhance primary production in terrestrial ecosystems, but biodiversity effects are largely unstudied in the ocean. We conducted a series of field and mesocosm experiments to measure the relative effects of macroalgal identity and richness on primary productivity (net photosynthetic rate) and biomass accumulation in hard substratum subtidal communities in North Carolina, USA. Algal identity consistently and strongly affected production; species richness effects, although often significent, were subtle. Partitioning of the net biodiversity effect indicated that complementarity effects were always positive and species were usually more productive in mixtures than in monoculture. Surprisingly, slow growing species performed relatively better in the most diverse treatments than the most productive species, thus selection effects were consistently negative. Our results suggest that several basic mechanisms underlying terrestrial plant biodiversity effects also operate in algal-based marine ecosystems, and thus may be general.  相似文献   

17.
Species richness of plant communities has been demonstrated to provide resistance to invasion by unsown species, though the relationship with resource availability varies between studies. The present work involved five grassland species grown in monocultures and in four-species mixtures sown in accordance with a simplex design. The species used represented different functional groups (i.e. grasses, legumes and non-N(2)-fixing species), each of which differed internally in terms of competitiveness. I hypothesized that sown diversity would negatively affect invader performance by decreasing the availability of light and soil nitrogen (N) for invading species, and that functional composition of the sown diversity would affect the functional composition of the invading flora. The experimental plots were harvested for two years, and were fertilized with 100 kg N ha(-1) each year. The number of unsown species (classified into four functional groups) invading each plot and their proportion of the biomass harvested were recorded. The penetration of incoming light through the canopy, the apparent N uptake by the sown species from the soil, and the mineral N content in the soil were measured. I found that diverse communities captured more resources both above- and belowground, and the number of invading species and their biomass production were smaller in mixed than in monoculture plots. However, the sampling effect of one grass was also strong. These results suggest that increased resource use in diverse communities can reduce invasion.  相似文献   

18.
Species evenness and productivity in experimental plant communities   总被引:6,自引:0,他引:6  
In nature, plant biomass is not evenly distributed across species, and naturally uncommon species may differ from common species in the probability of loss from the community. Understanding relationships between evenness and productivity is therefore critical to understanding changes in ecosystem functioning as species are lost from communities. We examined data from a large multi-site grassland experiment (BIODEPTH) for relationships between evenness of species composition (proportional abundance of biomass) and total biomass of communities. For plots which started with the same and even species composition, but which diverged in evenness over time, those with lower evenness had a significantly greater biomass. The relationship between evenness and biomass across all plots was also negative. However, for communities where the most common species represented one of the three largest species in monoculture at that site (inclusion of a large dominant species), the relationship was neutral. Path analyses indicated that three paths contributed to this negative relationship. First, higher species richness decreased evenness, but increased biomass (primarily through an increase in maximum plant size). Contrary to predictions, maximum plant size had either no effect on evenness, or a positive effect (in year 3 plots with a large dominant species), thereby reducing this relationship. In year 2, large variation among species in plant size (as measured in monoculture) both decreased evenness and increased biomass, thus increasing the strength of the negative relationship between evenness and biomass. However, the former effect was only found in plots with a large dominant species, the latter only in plots without a large dominant species. When species richness, maximum plant size, and variation in size were accounted for, in year 2 evenness positively affected biomass in plots that included a large dominant species. Our results are consistent with the view that naturally uncommon species may be unaffected by (or even benefit from) the presence of a large naturally common species, and that uncommon plants may have little ability to increase productivity in the absence of such a species. We conclude that the observed negative relationship between evenness and biomass resulted from multiple direct and indirect effects, the relative strength of which depended in part on the presence of large dominant species.  相似文献   

19.
Jaan Liira  Kristjan Zobel 《Oikos》2000,91(1):109-114
So far, in all studies on the much-discussed hump-backed relationship between plant community productivity and species richness, productivity has been assessed through plant shoot biomass, i.e. it has been ignored that frequently most of the biomass is produced below ground. We revisited the 27 grassland and forest field-layer communities, studied earlier by Zobel and Liira, to sample root biomass, plant total biomass and root/shoot allocation, and learn how the incorporation of below-ground biomass data would affect the shape of the hump-backed relationship. In order to avoid scaling artefacts we estimated richness as the average count of species per 500 plant ramets (absolute richness). We also included relative richness measures. Relative richness was defined as richness per 500 ramets/size of the actual species pool (the set of species present in the community), relative pool size was defined as size of the actual species pool/size of the regional species pool (the set of species available in the region and capable of growing in the given community).
The biomass-absolute richness relationship was humped, irrespective of the biomass measure used, the hump being most obvious when plant total biomass was used as the independent variable. Evidently, the unimodal richness–productivity curve is not a sampling artefact, as suspected by Oksanen. However, relative richness was not related to community biomass (above-ground, below-ground or total). The hump-backed curve is shaped by the sizes of actual species pools in communities, implying that processes which are responsible for small-scale diversity pattern mainly operate on the community level.
Neither absolute nor relative richness were significantly related to root/shoot allocation. The presumably stronger (asymmetric) shoot competition at greater allocation to shoots appears not to suppress small-scale richness. However, there is a significant relationship between relative pool size and root/shoot allocation. Relatively more species from regional species pools are able to enter and persist in communities with more biomass allocated into roots.  相似文献   

20.
The relationship was studied between shoot biomass, nutrient concentration in the soil and number of species per unit area. The study was carried out in two different parts of the Netherlands, the Gelderse Vallei (east of Amersfoort) and the Westbroekse Zodden (northwest of Utrecht). Four series of vegetation and soil samples were taken: one series in grassland and wetland communities, one series in grassland communities, one series in fen communities and one series in only one wetland community. The two series in grassland communities show a negative correlation between shoot biomass and species number and a positive correlation between shoot biomass and nutrient concentration in the soil. The opposite was found in the series in the fen communities: there was a positive correlation between species number and shoot biomass and a negative correlation between shoot biomass and nutrient concentrations. The series of samples that had been taken in only one wetland community showed an optimum curve for the relation between shoot biomass and number of species. It is concluded that in the plant communities studied the species richness per unit area increases with increasing productivity at low production levels (< 400–500 g/m2) and decreases with increasing productivity at higher production levels (> 400–500 g/m2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号