首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration.  相似文献   

2.
Buffalograss, Buchloë dactyloides, is widely distributed throughout the Great Plains of North America, where it is an important species for rangeland forage and soil conservation. The species consists of two widespread polyploid races, with narrowly endemic diploid populations known from two regions: central Mexico and Gulf Coast Texas. We describe and compare the patterns of allozyme and RAPD variation in the two diploid races, using a set of 48 individuals from Texas and Mexico (four population samples of 12 individuals each). Twelve of 22 allozyme loci were polymorphic, exhibiting 35 alleles, while seven 10-mer RAPD primers revealed 98 polymorphic bands. Strong regional differences were detected in the extent of allozyme polymorphism: Mexican populations exhibited more internal gene diversity (He= 0.20, 0.19) than did the Texan populations (He= 0.08, 0.06), although the number of RAPD bands in Texas (n= 62) was only marginally smaller than in Mexico (n= 68). F-statistics for the allozyme data, averaged over loci, revealed strong regional differentiation (mean FRT=+ 0.30), as well as some differentiation among populations within regions (mean FPR=+ 0.09). In order to describe and compare the partitioning of genetic variation for multiple allozyme and RAPD loci, we performed an Analysis of Molecular Variance (AMOVA). AMOVA for both allozyme and RAPD data revealed similar qualitative patterns: large regional differences and smaller (but significant) population differences within regions. RAPDs revealed greater variation among regions (58.4% of total variance) than allozymes (45.2%), but less variation among individuals within populations (31.9% for RAPDs vs. 45.2% for allozymes); the proportion of genetic variance among populations within regions was similar (9.7% for RAPDs vs. 9.6% for allozymes). Despite this large-scale concordance of allozyme and RAPD variation patterns, multiple correlation Mantel techniques revealed that the correlations were low on an individual by individual basis. Our findings of strong regional differences among the diploid races will facilitate further study of polyploid evolution in buffalograss.  相似文献   

3.
ABSTRACT.   Shorebirds migrating through the Southern Great Plains (SGP), USA, use freshwater playas and saline lakes as stopovers. The importance of playas is well documented, but the role of saline lakes is not clearly understood. During 2002 and 2003, we conducted surveys to determine the extent to which the saline lakes serve as stopovers. Twenty-eight species were recorded, and total seasonal abundance ranged from 6779 to 29,924 birds. Potential shorebird abundance for extant saline lakes was estimated at 37,000–71,000 shorebirds annually. American Avocets ( Recurvirostra americana ), Western Sandpipers ( Calidris mauri ), Baird's Sandpipers ( C. bairdi ), Least Sandpipers ( C. minutilla ), Snowy Plovers ( Charadrius alexandrinus ), Killdeer ( Charadrius vociferus ), and Wilson's Phalaropes ( Phalaropus tricolor ) were the most abundant species. Community composition of shorebirds differed between saline lakes and regional freshwater playas. Peak spring abundance was generally in April, whereas summer/fall migration was more protracted and shorebird abundance peaked during 6–8 weeks in August and September. Migration chronologies differed among morphologically similar species, and among representative species from different guilds. Such patterns of temporal separation permit partitioning of resources by shorebirds migrating through the SGP. The saline lakes of the SGP should be regarded as stopover sites of regional and international value. To ensure that saline lakes function as stopovers and to help maintain those unique communities that inhabit them, conservation of saline lakes should focus on preserving spring flows and conserving water.  相似文献   

4.
Abstract. Few empirical data exist to examine the influence of regional scale environmental gradients on productivity patterns of plant species. In this paper we analyzed the productivity of several dominant grass species along two climatic gradients, mean annual precipitation (MAP) and mean annual temperature (MAT), in the Great Plains of the United States. We used climatic data from 296 weather stations, species production data from Natural Resource Conservation Service rangeland surveys and a geographic information system to spatially integrate the data. Both MAP and MAT were significantly related to annual above-ground net primary production (ANPP). MAP explained 54% to 89% of the variation in ANPP of two C4 short-grasses, Bouteloua gracilis and Buchloë dactyloides, and two C4 tall-grasses, Andropogon gerardii and Schizachyrium scoparium (= Andropogon scoparius). MAT explained 19% to 41% of the variation in ANPP of two C4 grasses, B. gracilis and B. dactyloides, and 41% to 66% of the variation in ANPP of two C3 grasses, Agropyron smithii and Stipa comata. ANPP patterns for species along both gradients were described by either linear, negative exponential, logistic, normal or skewed curves. Patterns of absolute ANPP (g/m2) for species differed from those of relative ANPP (%) along the MAP gradient. Responses were similar for species with common functional characteristics (e.g. short-grasses, tall-grasses, C3, C4). Our empirical results support asymmetric responses of species to environmental gradients. Results demonstrate the importance of species attributes, type of environmental gradient and measure of species importance (relative or absolute productivity) in evaluating ecological response patterns.  相似文献   

5.
Aim We analysed lake‐sediment pollen records from eight sites in southern New England to address: (1) regional variation in ecological responses to post‐glacial climatic changes, (2) landscape‐scale vegetational heterogeneity at different times in the past, and (3) environmental and ecological controls on spatial patterns of vegetation. Location The eight study sites are located in southern New England in the states of Massachusetts and Connecticut. The sites span a climatic and vegetational gradient from the lowland areas of eastern Massachusetts and Connecticut to the uplands of north‐central and western Massachusetts. Tsuga canadensis and Fagus grandifolia are abundant in the upland area, while Quercus, Carya and Pinus species have higher abundances in the lowlands. Methods We collected sediment cores from three lakes in eastern and north‐central Massachusetts (Berry East, Blood and Little Royalston Ponds). Pollen records from those sites were compared with previously published pollen data from five other sites. Multivariate data analysis (non‐metric multi‐dimensional scaling) was used to compare the pollen spectra of these sites through time. Results Our analyses revealed a sequence of vegetational responses to climate changes occurring across southern New England during the past 14,000 calibrated radiocarbon years before present (cal yr bp ). Pollen assemblages at all sites were dominated by Picea and Pinus banksiana between 14,000 and 11,500 cal yr bp ; by Pinus strobus from 11,500 to 10,500 cal yr bp ; and by P. strobus and Tsuga between 10,500 and 9500 cal yr bp . At 9500–8000 cal yr bp , however, vegetation composition began to differentiate between lowland and upland sites. Lowland sites had higher percentages of Quercus pollen, whereas Tsuga abundance was higher at the upland sites. This spatial heterogeneity strengthened between 8000 and 5500 cal yr bp , when Fagus became abundant in the uplands and Quercus pollen percentages increased further in the lowland records. The differentiation of upland and lowland vegetation zones remained strong during the mid‐Holocene Tsuga decline (5500–3500 cal yr bp ), but the pattern weakened during the late‐Holocene (3500–300 cal yr bp ) and European‐settlement intervals. Within‐group similarity declined in response to the uneven late‐Holocene expansion of Castanea, while between‐group similarity increased due to homogenization of the regional vegetation by forest clearance and ongoing disturbances. Main conclusions The regional gradient of vegetation composition across southern New England was first established between 9500 and 8000 cal yr bp . The spatial heterogeneity of the vegetation may have arisen at that time in response to the development or strengthening of the regional climatic gradient. Alternatively, the differentiation of upland and lowland vegetation types may have occurred as the climate ameliorated and an increasing number of species arrived in the region, arranging themselves in progressively more complex vegetation patterns across relatively stationary environmental gradients. The emergence of a regional vegetational gradient in southern New England may be a manifestation of the increasing number of species and more finely divided resource gradient.  相似文献   

6.
Abstract. Snow patch vegetation in Australia is rare, being restricted to the relatively small area of alpine and subalpine country in the highlands of southeastern Australia. Snow patch vegetation occurs on steeper, sheltered southeastern slopes, where snow persists until well into the growing season (December/January). We surveyed the vegetation of 33 snow patch sites in the alpine and subalpine tracts of the Bogong High Plains, within the Alpine National Park, in Victoria. The vegetation was dominated by herbs and graminoids, with few shrubs and mosses. Major structural assemblages identified included closed herb‐fields dominated by Celmisia spp, and grasslands dominated by Poa fawcettiae or Poa costiniana. These assemblages occurred on mineral soils. Open herb‐fields dominated by Caltha introloba and several sedge species occurred on rocky and stony substrata. Vegetation‐environment relationships were explored by ordination and vector fitting. There was significant variation in the floristic composition of snow patch vegetation as a function of duration of snow cover, altitude, slope and site rockiness. Alpine sites were floristically distinct from subalpine sites, with a greater cover of Celmisia spp. and a lesser cover of low shrubs in the former. There was floristic variation within some snow patches as a function of slope position (upper, middle or lower slope) but this was not consistent across sites. The current condition of snow patch vegetation on the Bogong High Plains is degraded, with bare ground exceeding 20% cover at most sites. Snow patch vegetation is utilized preferentially by domestic cattle, which graze parts of the Bogong High Plains in summer. Such grazing is a potential threat to this rare vegetation type.  相似文献   

7.
Distribution of VA mycorrhiza on halophytes on inland salt playas   总被引:5,自引:0,他引:5  
The value of mycorrhizal association for higher plants has been well established. However, the impact of high salinity on the mycorrhizal relationship has not been investigated to any great extent. Inland salt playas represent an opportunity to test the impact of salinity because it is possible to obtain a gradient by following a transect from the centre of the salt playa to the higher outer zones. In a salt playa near Goshen, Utah, the sodium concentration ranged from 27,150 ppm in the centre to 25 ppm in the outer zone. In the playas with sodium concentrations of 20,000 ppm, no mycorrhiza were detected on the halophytes and no spores of mycorrhizal fungi were found in the soil. One percent of the roots of salt grass in soils containing 8,450 ppm of sodium were mycorrhizal. In soils containing 622 ppm of 45 percent of the roots of a salt-tolerant grass (hybrid ofAgropyron repens × Agropyron spicatum) were mycorrhizal. Halophytes such asSalicornia pacifica var.utahensis which are among the most salt tolerant halophytes of the inland salt playas rarely had mycorrhizal roots. The mycorrhizal associations appear to be very limited in inland salt playas with sodium content.  相似文献   

8.
Wetland invertebrates have evolved numerous means of inhabiting spatially and temporally flooded wetland environments. The ability of invertebrates to either colonize from other sources and/or to persist in dry wetlands through diapause has seldom been simultaneously studied. We compared strategies of colonization and persistence by invertebrates in variable environments (playa wetlands on the Southern High Plains of Texas). We also examined emergence response time, following flooding, of taxa that persist in playa soil using field experiments and microcosms. At least 26 of 87 invertebrate taxa survive seasonal drying of playas through aestivation in soil. More invertebrate taxa only colonized flooded playas (70.1%) than only persisted in dry soil (29.9%) (P < 0.05). Of the invertebrate taxa that persisted in dry soil, more (P < 0.05) of these were active colonists or relied strictly on diapause rather than a combination of aestivation and colonization. Invertebrate densities were not statistically different among taxa that practiced colonization and persistence (5.2 invertebrates/m2, SE = 2.0) or that only persisted (1.5 invertebrates/m2, SE = 0.5) in playas (P=0.918). The average amount of time for a taxon to first appear in a microcosm was about 3 weeks less in 1995–96 than 1994–95, which was likely due to greater precipitation during 1995–96. We found that both colonization and persistence was practiced more often than a single strategy for those invertebrates sampled in microcosms. Conservation efforts for playa invertebrates should be implemented at the landscape level and focus on playas with intact watersheds, because these playas have relatively undisturbed hydroperiods.  相似文献   

9.
Laboratory microcosms were used to assess whether tadpole shrimp, Triops sp., affect community structure of other native macroinvertebrates in playa lakes of the Southern High Plains of Texas. Removal of tadpole shrimp shortly after hatching reduced abundances of many taxa, and decreased subsequent taxonomic richness and diversity. For many invertebrates, the presence of tadpole shrimp in low numbers had a positive effect on mean abundance. Direct effects of tadpole shrimp include the reduction of prey species abundance, which in turn may alter biotic interactions among other taxa. Indirect effects include physical modification of the environment during foraging through surface sediments. Results suggest that tadpole shrimp may be a key species controlling structure of macroinvertebrate communities in playa lakes.  相似文献   

10.
Abstract: Standardized, effective sampling methods are required to monitor amphibian population trends and community composition. Funnel traps have been used to ostensibly estimate species richness and relative abundance of larval amphibians. We tested whether funnel traps can be used to provide unbiased estimates of amphibian community composition in playa wetlands by comparing seining—dip netting and passive funnel-trapping results. Plains spadefoots (Spea bombifrons) were more prone to be captured in funnel traps whereas New Mexico spadefoots (S. multiplicata) were less likely captured by funnel traps than by seines and dip nets. In playas funnel traps should be used only for collecting specimens and not for estimating amphibian community composition.  相似文献   

11.
RAPD markers provide a powerful tool for the investigation of genetic variation in natural and domesticated populations. Recent studies of strain/cultivar identification have shown extensive RAPD divergence among, but little variation within, inbred species or cultivars. In contrast, little is known about the pattern and extent of RAPD variation in heterogeneous, outcrossing species. We describe the population genetic variation of RAPD markers in natural, diploid sources of dioecious buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Buffalograss is native to the semi-arid regions of the Great Plains of North America, where it is important for rangeland forage, soil conservation, and as turfgrass. Most sources of buffalograss germplasm are polyploid; diploid populations are previously known only from semi-arid Central Mexico. This is the first report of diploids from humid Gulf Coastal Texas. These two diploid sources represent divergent adaptive ecotypes. Seven 10-mer primers produced 98 polymorphic banding sites. Based on the presence/ absence of bands, a genetic distance matrix was calculated. The new Analysis of Molecular Variance (AMOVA) technique was used to apportion the variation among individuals within populations, among populations within adaptive regions, and among regions. There was considerable variation within each of the four populations, and every individual was genetically distinct. Even so, genetic divergence was found among local populations. Within-population variation was larger and among-population variation smaller in Mexico than in Texas. The largest observed genetic differences were those between the two regional ecotypes. These patterns of genetic variation were very different from those reported for inbred species and provide important baseline data for cultivar identification and continuing studies of the evolution of polyploid races in this species.  相似文献   

12.
This study examines the extent to which interactions among two common alpine/subalpine plant species and their neighbours at the Bogong High Plains in southern Australia are characterized by competition or facilitation. The two target species were Celmisia pugioniformis (Asteraceae) and Carex breviculmis (Cyperaceae). Biotic interactions were examined using vegetation removal manipulations over three growing seasons at five sites across the altitudinal range of tall alpine herbfield communities. Observations recorded growth and mortality. Results for C. pugioniformis clearly indicated facilitation as a dominant process across all sites and seasons. Plants that had their neighbours removed tended to perform worse than plants that had their neighbours left intact. Growth observations for Ca. breviculmis were less clear, but again suggested facilitation. Mortality was distinctly higher among Ca. breviculmis individuals that had their neighbours removed relative to those with neighbours left intact. Results collectively suggest the removal of neighbours acts to reduce growth and increase mortality in C. pugioniformis and Ca. breviculmis throughout the altitudinal range of tall alpine herbfields at the Bogong High Plains. Facilitative and competitive interactions need to be recognized in efforts aimed at mitigating climate change‐associated impacts on the ecology of alpine plant communities. The extent to which biotic interactions may exacerbate or buffer abiotic change is difficult to predict, emphasizing the need for ecological monitoring.  相似文献   

13.
14.
Mountains are biodiversity hotspots and provide spatially compressed versions of regional and continental variation. They might be the most cost effective way to measure the environmental associations of regional biotic communities and their response to global climate change. We investigated spatial variation in epigeal ant diversity along a north–south elevational transect over the Soutpansberg Mountain in South Africa, to see to what extent these patterns can be related to spatial (regional) and environmental (local) variables and how restricted taxa are to altitudinal zones and vegetation types. A total of 40,294 ants, comprising 78 species were caught. Ant richness peaked at the lowest elevation of the southern aspect but had a hump-shaped pattern along the northern slope. Species richness, abundance and assemblage structure were associated with temperature and the proportion of bare ground. Local environment and spatially structured environmental variables comprised more than two-thirds of the variation explained in species richness, abundance and assemblage structure, while space alone (regional processes) was responsible for <10%. Species on the northern aspect were more specific to particular vegetation types, whereas the southern aspect’s species were more generalist. Lower elevation species’ distributions were more restricted. The significance of temperature as an explanatory variable of ant diversity across the mountain could provide a predictive surrogate for future changes. The effect of CO2-induced bush encroachment on the southern aspect could have indirect impacts complicating prediction, but ant species on the northern aspect should move uphill at a rate proportional to their thermal tolerance and the regional increases in temperature. Two species are identified that might be at risk of local extinction.  相似文献   

15.
Abstract The Chihuahuan desert of New Mexico, USA, has changed in historical times from semiarid grassland to desert shrublands dominated by Larrea tridentata and Prosopis glandulosa. Similar displacement of perennial grasslands by shrubs typifies desertification in many regions. Such structural vegetation change could alter average values of net primary productivity, as well as spatial and temporal patterns of production. We investigated patterns of aboveground plant biomass and net primary production in five ecosystem types of the Jornada Basin Long‐Term Ecological Research (LTER) site. Comparisons of shrub‐dominated desertified systems and remnant grass‐dominated systems allowed us to test the prediction that shrublands are more heterogeneous spatially, but less variable over time, than grasslands. We measured aboveground plant biomass and aboveground net primary productivity (ANPP) by species, three times per year for 10 years, in 15 sites of five ecosystem types (three each in Larrea shrubland, Bouteloua eriopoda grassland, Prosopis dune systems, Flourensia cernua alluvial flats, and grass‐dominated dry lakes or playas). Spatial heterogeneity of biomass at the scale of our measurements was significantly greater in shrub‐dominated systems than in grass‐dominated vegetation. ANPP was homogeneous across space in grass‐dominated systems, and in most growing seasons was significantly more patchy in shrub vegetation. Substantial interannual variability in ANPP complicates comparison of mean values across ecosystem types, but grasslands tended to support higher ANPP values than did shrub‐dominated systems. There were significant interactions between ecosystem type and season. Grasslands demonstrated higher interannual variation than did shrub systems. Desertification has apparently altered the seasonality of productivity in these systems; grasslands were dominated by summer growth, while sites dominated by Larrea or Prosopis tended to have higher spring ANPP. Production was frequently uncorrelated across sites of an ecosystem type, suggesting that factors other than season, regional climate, or dominant vegetation may be significant determinants of actual NPP.  相似文献   

16.
We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch‐based graphical model and then compared within and among three species that co‐occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic‐spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic‐spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross‐basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage.  相似文献   

17.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

18.
Bollworm, Helicoverpa zea (Boddie), and tobacco budworm, Heliothis virescens (F.), male adult (moth) activities were monitored between 1982 and 1995 by using sex pheromone traps in the Texas High Plains. Moths were monitored weekly from early March to mid-November near Lubbock and Halfway, two prominent cotton production areas in the Texas High Plains region. Based on trap captures, the bollworm-budworm complex consisted of approximately 98% bollworms and approximately 2% tobacco budworms. Seasonal activity patterns varied between location for bollworm but not for tobacco budworm. The 14-yr average (+/- SE) bollworm moth abundance (moths per trap per week) at Lubbock was significantly higher (226.5 +/- 10.4) compared with that at Halfway (153.7 +/- 8.1). Correlation analyses showed a significant positive relationship between moth abundance and average weekly temperatures, whereas a significant negative relationship was observed between moth abundance and average weekly wind velocity for both species. Analyses also showed a positive correlation between moth abundance and cumulative degree-days (> 0.0 degrees C) from 1 January. A strong positive relationship was observed between moth abundance and weekly average precipitation for both species. Average weekly abundances were positively correlated between adjacent months during most of the active cotton fruiting season (June-September). However, the relationship between populations that contributed to the overwintering generation and the following spring populations varied between species and study sites. Nevertheless, data from this study indicated that late-season moth catches could be indicative of the dynamics of the early-season moth catches the following year in the High Plains. The mean population abundance curve based on 14-yr averages showed two bollworm population peaks at Lubbock, but only one peak at Halfway. Separate degree-day-based models were developed to describe long-term seasonal abundance patterns of bollworm moths for the Lubbock and Halfway sites.  相似文献   

19.
This paper examines the contribution of human migrations to the propagation and maintenance of Caesalpina bonduc by means of an analysis of its population genetics and distribution patterns. One hundred and forty seven sites were surveyed in the three climatic zones of Benin and all individuals of the species were recorded. A set of individuals was randomly selected and sampled from seven populations and morphological variation and genetic diversity were assessed. The study confirmed the presence of the species in all climatic zones but its abundance varied greatly. Morphological variability between populations and zones was low in comparison with the high amount of variation within populations. AFLP and cpDNA fingerprinting revealed an extremely low genetic diversity within populations and a low genetic differentiation, suggesting parental links between populations. The results support the hypothesis of human involvement in Caesalpinia dispersal and persistence in Benin. However, the low genetic diversity may imply high risks for future extinction. We recommend that gene flow among the remaining populations be supported in order to conserve the species.  相似文献   

20.
Kenneth M. Brown 《Oecologia》1981,50(3):380-385
Summary Foraging patterns were determined for three orbweaving spiders in several geographical locations varying in percent cover by herbaceous vegetation. Argiope trifasciata was the most common species in early successional habitats, while both Argiope aurantia and Araneus trifolium were more common in wetter, more herbaceous sites. Discriminant analysis revealed that web height selected for webs and body size were the variables that explained most of the variation among populations in foraging patterns. Argiope aurantia forages lowest in vegetation, A. trifasciata at intermediate heights, and A. trifolium near the top of the vegetation. The body size sequence is reversed.Web radius, spider size, and web height appear to explain much of the variation in abundance and size of prey in webs. Species foraging higher in the vegetation take more winged prey, while larger species foraging lower in the vegetation tend to take larger, jumping prey like acridids. Comparison of prey in webs with field estimates of potential prey suggests that orbweavers select large insect prey. Inferential evidence indicates that interspecific competition may be responsible for the divergence in foraging patterns among species reported here. However, field manipulative experiments have not yet indicated that competition among orb-weavers is severe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号