首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 131 毫秒
1.
Abstract.  1. When first instar nymphs and adults of the grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphidiae) were maintained in long-term cultures (>6 months) at 20 °C and 10 °C, the LT50 decreased from −8 and −8.8 °C to −16.0 and −13.5 °C, respectively.
2. When aphids from the 20 °C culture were transferred to 10 °C, there was a progressive increase in cold tolerance through three successive generations. Transfer of newly moulted pre-reproductive adults reared at 10 °C for three generations back to 20 °C resulted in a rapid loss of cold hardiness in their nymphal offspring.
3. In all generations reared at 10 °C, first born nymphs were more cold hardy than those born later in the birth sequence. The LT50 of nymphs produced on the first day of reproduction in the first, second and third generations maintained at 10 °C were −14.8, −17.0 and −16.6 °C, respectively. Thereafter, nymphal cold hardiness decreased over the subsequent 14 days of reproduction in each generation at 10 °C with mean LT50 values of −10.3, −12.6 and −14.8 °C, respectively. By contrast, the cold tolerance of first born nymphs of aphids reared continuously at 20 °C did not differ in comparison with later born siblings. The LT50 of adult aphids was also unaffected by ageing.
4. The ecological relevance of these findings is discussed in relation to the overwintering survival of aphids such as S. avenae .  相似文献   

2.
The population of the cicada Cryptotympana facialis began to increase in Osaka, Japan, during the late 20th century. Climate warming is considered a major cause, although the relationship between temperature and the cicada population increase remains unclear. By examining cold tolerance in overwintering eggs of C. facialis in relation to another cicada, Graptopsaltria nigrofuscata , whose population has recently decreased in Osaka, we tested the hypothesis that warming has caused the population increase of C. facialis by decreasing egg mortality due to winter temperatures. A short-term (24 h) cold exposure experiment demonstrated that the half-lethal temperatures (LT50) of C. facialis and G. nigrofuscata were −23.3°C and −28.9°C, respectively, although these extreme low temperatures never occurred in Osaka during the 20th century. Prolonged exposure to −5°C for up to 30 days had no harmful effects on the hatching rate in either species. Overwintering mortality was also assessed under naturally fluctuating conditions by transferring eggs to cooler elevated sites that mimicked the environment prior to the current warming. Eggs of C. facialis that overwintered at the cooler site exhibited similar hatching rates to those maintained at the original site. The results of these experiments consistently indicated that overwintering eggs of C. facialis possess adequate tolerance to the low temperatures of the 20th century. Therefore, we rejected our initial hypothesis that recent increases in the C. facialis population have been caused by warming-related reductions in overwintering egg mortality.  相似文献   

3.
Abstract.  The present study investigates the influence of environmental moisture on cold hardiness of the migratory locust, Locusta migratoria . The water content of locust eggs kept in soil at 30 °C varies according to the moisture content of the substrate. In turn, it can significantly affect the supercooling point of locust eggs (range from −26 to −14.8 °C) and the mortality when exposed to subzero temperatures. Environmental moisture influences the supercooling capacity of eggs and their survival at low temperature. When locust eggs of the same water content are exposed to subzero temperatures under different soil moistures, their mortality varies between short-time exposure and long-time exposure at subzero temperatures. Given a short-time exposure, mortality in wet soil is lower than in dry soil due to the buffering effect of soil water against temperature change. The pattern of egg mortality is reversed after long-time exposure at low temperature, suggesting that inoculative freezing may be an important mortality factor. It is suggested that interactions between soil moisture and low temperature can influence the cold hardiness of locust eggs, and partial dehydration is beneficial to over-wintering eggs of the migratory locust.  相似文献   

4.
Abstract.  1. Cold tolerance is a fundamental adaptation of insects to high latitudes. Flexibility in the cold hardening process, in turn, provides a useful indicator of the extent to which polar insects can respond to spatial and temporal variability in habitat temperature.
2. A scaling approach was adopted to investigate flexibility in the cold tolerance of the high Arctic collembolan, Hypogastrura tullbergi , over different time-scales. The cold hardiness of animals was compared from diurnal warming and cooling phases in the field, and controlled acclimation and cooling treatments in the laboratory. Plasticity in acclimation responses was examined using three parameters: low temperature survival, cold shock survival, and supercooling points (SCPs).
3. Over time-scales of 24–48 h, both field animals from warm diurnal phases and laboratory cultures from a 'warm' acclimation regime (18 °C) consistently showed greater or equivalent cold hardiness to animals from cool diurnal phases and acclimation regimes (3 °C).
4. No significant evidence was found of low temperature acclimation after either hours or days of low temperature exposure. The cold hardiness of H. tullbergi remained 'seasonal' in character and mortality throughout was indicative of the summer state of acclimatization.
5. These data suggest that H. tullbergi employs an 'all or nothing' cryoprotective strategy, cold hardening at seasonal but not diel-temporal scales.
6. It is hypothesised that rapid cold hardening offers little advantage to these high Arctic arthropods because sub-zero habitat temperatures during the summer on West Spitsbergen are rare and behavioural migration into soil profiles offers sufficient buffering against low summer temperatures.  相似文献   

5.
Cold hardiness of eggs and neonate larvae of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) was examined using six geographical populations in Japan. Particular attention was paid to cold hardiness of eggs and neonate larvae of the subtropical population (Ishigaki), because the east Japan populations are considered to have been introduced from a subtropical area, and the overwintering stage in the east Japan populations is incidentally shifted from the original mature larval stage to the egg or neonate larval stages. When the eggs were exposed to low temperatures for 1 h, the decrease in hatchability became significant at –12°C in the southernmost two populations (Ishigaki and Naze), and at –16°C in the northern populations. After 1 h exposure to –20°C, few eggs could hatch in the Ishigaki population, whereas 27–55% of the eggs survived in the northern populations. Pre-chilling of the eggs at 10°C for 10 days enhanced the cold hardiness in all populations. This effect was particularly distinct in the subtropical population; the eggs of the Ishigaki population became as cold hardy as those of the northern populations after acclimation. These results suggest that the subtropical population is capable of establishing itself in east Japan, where the winter is cold.  相似文献   

6.
Free and conjugated abscisic acid (ABA) levels in stem-cultured plantlets of potato ( Solanum commersonii Dun, PI 458317) during cold acclimation were measured. The levels of free and conjugated ABA were measured by an enzyme immunoassay (EIA) with rabbit anti-ABA-serum. The use of immunoglobulin G fraction purified from rabbit antiserum and the methylated form of ABA resulted in an improved measuring range (0.01 to 10 pmol ABA) and precision (slope of logit-log plot, −1.35) of EIA, compared to the use of antiserum and free ABA. Estimates of the EIA were consistent with those resulting from a commercial EIA. Under a 4/2°C (day/night) temperature regime, the potato plantlets increased cold hardiness from −5°C (warm-grown control) to −10°C by the 7th day. During the same period, there were two transitory increases in free ABA, the first one three-fold from 1.5 to 5.3 nmol (g dry weight)−1 on the 2nd day and the second one five-fold from 1.5 to 7.6 nmol (g dry weight)−1 on the 6th day. Each increase in ABA concentration was followed by an increase in cold hardiness. There was no significant change in conjugated ABA content (4.2±0.6 nmol [g dry weight]−1) throughout the cold acclimation period. The lack of an interrelationship between levels of free and conjugated ABA suggested that the transitory increase in free ABA during cold acclimation was not a result of the conversion of conjugated ABA. The increase in free ABA due to biosynthesis of ABA during potato cold acclimation is discussed.  相似文献   

7.
1. The effect of temperature on embryonic development was compared in four populations, two bisexual and two unisexual, of Ephoron shigae , including one each near the northern and southern periphery of the species range in Japan.
2. Eggs from every population were chilled at 4, 8 or 12 °C for diapause development after 50 days at 20 °C for pre-diapause development (experiment I). Some eggs hatched during chilling at 8 °C or 12 °C, whereas no eggs hatched at 4 °C. The rate of hatching in a given condition of chilling was higher for the eggs from warmer winter environments.
3. Chilling at 4 or 8 °C effectively facilitated diapause development. Chilling at 12 °C was, in general, not so effective, but relatively effective for the eggs from warmer winter environments.
4. Eggs were incubated at 8, 12, 15 or 20 °C after chilling at 4 °C to examine the effect of temperature on post-diapause development (experiment II). The eggs incubated at higher temperature after chilling hatched quicker and more synchronously and had higher hatching success.
5. The relationship between temperature and the days required for hatching after chilling was well described by the power function. There was no significant difference in the slope of the regression lines (i.e. temperature dependency) among local populations. However, a longer time was required for hatching at a given temperature for the population from the colder winter environment.
6. There was no detectable difference in the observed intraspecific variations between unisexual and bisexual populations.  相似文献   

8.
Abstract.  The Antarctic collembolan, Cryptopygus antarcticus (Willem), can switch its supercooling point (SCP) between 'winter' and 'summer' modes of cold hardiness over a matter of hours. High resolution temporal scaling of the acquisition and loss of cold hardiness is undertaken by assaying changes in the proportion of animals freezing below −15 °C in response to cooling rate, acclimation temperature, and access to food and moisture. Rapid de-acclimation to the 'summer' modal state is readily achieved after 1–6 h in response to warming and access to food; however, rapid acclimation to the 'winter' modal state is only evident in response to slow cooling and narrow ranges of temperature (0–5 °C). The rapid loss of cold tolerance at higher temperatures with access to food, in particular, emphasizes this species' opportunistic responses to resource availability in the short polar summers. Cold hardiness is apparently more readily traded off against nutrient acquisition than vice versa in this maritime Antarctic species.  相似文献   

9.
Abstract. Larvae of the hoverfiy Episyrphus balteatus (DeGeer) are important predators of aphids in the U.K. A large proportion of the U.K. population migrates south to warmer climes at the end of summer, but a small number are thought to overwinter in the U.K., with the mated female being the overwintering morph. The cold tolerance of adult flies was investigated to assess the overwintering potential of E. balteatus in the U.K. The high supercooling point (SCP) of -8.3 ± 0.7°C, and lethal temperature (LTemp30) of -9.1°C for acclimated females suggest that E. balteatus has limited cold hardiness. This was confirmed by experiments where, despite a strong acclimation response in both males and females, there was no long-term survival at 5, 0 or - 5°C. At 5°C, 90% of females had died after 10 days. The weak cold hardiness of adult E. balteatus was corroborated by field experiments which demonstrated a 100% mortality after 10 weeks' exposure to U.K. winter conditions. The ecological significance of this limited cold hardiness is discussed in relation to the overwintering abilities of E. balteatus in the U.K.  相似文献   

10.
Abstract.  The effect of long-term (seasonal) acclimation and rapid cold hardening is investigated on the cold torpor temperature ( CT min) of adult grain aphids, Sitobion avenae, reared at 20 or 10 °C for more than 6 months before experimentation. Rapid cold hardening is induced by exposing aphids reared at 20 to 0 °C for 3 h and aphids reared at 10 to 0 °C for 30 min (acclimation regimes previously found to induce maximum rapid cold hardening). The effect of cooling aphids from the same rearing regimes from 10 to −10 °C at 1, 0.5 and 0.1 °C min−1 is also investigated. In the 20 °C acclimated population, rapid cold hardening and cooling at 0.1 °C min−1 both produce a significant decrease in CT min from 1.5 ± 0.3 to –0.9 ± 0.3 and –1.3 ± 0.3 °C, respectively. Rapid cold hardening also results in a significant reduction in CT min of the population reared at 10 °C from 0.8 ± 0.1 to –0.9 ± 0.2 °C. However, none of the cooling regimes tested reduces the CT min of the winter-acclimated (10 °C) population. The present study demonstrates that rapid cold-hardening induced during the cooling phase of natural diurnal temperature cycles could lower the movement threshold of S. avenae , allowing insects to move and continue feeding at lower temperatures than would otherwise be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号