首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Birds combat ectoparasites with many defences but the first line of defence is grooming behaviour, which includes preening with the bill and scratching with the feet. Preening has been shown to be very effective against ectoparasites. However, most tests have been with feather lice, which are relatively slow moving. Less is known about the effectiveness of preening as a defence against more mobile and evasive ectoparasites such as hippoboscid flies. Hippoboscids, which feed on blood, have direct effects on the host such asanaemia, as well as indirect effects as vectors of pathogens. Hence, effective defence against hippoboscid flies is important. We used captive Rock Pigeons (Columba livia) to test whether preening behaviour helps to control pigeon flies (Pseudolynchia canariensis). We found that pigeons responded to fly infestation by preening twice as much as pigeons without flies. Preening birds killed twice as many flies over the course of our week-long experiment as birds with impaired preening; however, preening did not kill all of the flies. We also tested the role of the bill overhang, which is critical for effective preening against feather lice, by experimentally removing the overhang and re-measuring the effectiveness of preening against flies. Birds without overhangs were as effective at controlling flies as were birds with overhangs. Overall, we found that preening is effective against mobile hippoboscid flies, yet it does not eliminate them. We discuss the potential impact of preening on the transmission dynamics of blood parasites vectored by hippoboscid flies.  相似文献   

2.
Populations of a host species may exhibit different assemblages of parasites and other symbionts. The loss of certain species of symbionts (lineage sorting, or "missing-the-boat") is a mechanism by which geographical variation in symbiont assemblages can arise. We studied feather mites and lice from Australian brush-turkeys (Aves: Megapodiidae: Alectura lathami) and expected to observe geographical structuring in arthropod assemblages for several reasons. First, because the brush-turkey is a sedentary ground-dwelling bird, we predicted that geographically close host populations should share more similar arthropod assemblages than distant ones. Second, because brush-turkeys do not brood their young, vertical transfer of arthropods is unlikely, and brush-turkeys probably acquire their mites and lice at social maturity through contact with other birds. Young birds could disperse and found new populations without carrying complete sets of symbionts. We predicted that young birds would have fewer species of arthropods than older birds; in addition, we expected that males (which are polygynous) would have more species than females. Birds were sampled from 12 sites (=populations) along the east coast of Queensland, Australia, that were separated by a distance of 12.5-2,005 km. In total, 5 species of mites from the Pterolichidae and 1 species from the Ascouracaridae were found. Two species of lice were collected but in numbers too low to be statistically useful. Differentiation of mite assemblages was evident; in particular, Leipobius sp. showed 100% prevalence in 3 host populations and 0% in the remaining 9. A dendrogram of brush-turkey populations based on mite assemblages showed 2 geographically correlated clusters of sites, plus 1 cluster that contained 2 sites near Brisbane and 1 approximately at a distance of 1,000 km. There was no strong effect of host age or sex on number of mite species carried. Horizontal transfer of feather mites by hippoboscid flies, in addition to physical contact between hosts, may play a role in homogenizing symbiont assemblages within populations.  相似文献   

3.
Feather mites are arthropods that live on or in the feathers of birds, and are among the commonest avian ectosymbionts. However, the nature of the ecological interaction between feather mites and birds remains unclear, some studies reporting negative effects of feather mites on their hosts and others reporting positive or no effects. Here we use a large dataset comprising 20 189 measurements taken from 83 species of birds collected during 22 yr in 151 localities from seven countries in Europe and North Africa to explore the correlation between feather mite abundance and body condition of their hosts. We predicted that, if wing‐dwelling feather mites are parasites, a negative correlation with host body condition should be found, while a mutualistic interaction should yield positive correlation. Although negative relationships between feather mite abundance and host body condition were found in a few species of birds, the sign of the correlation was positive in most bird species (69%). The overall effect size was only slightly positive (r =0.066). The effect of feather mite abundance explained <10% of variance in body condition in most species (87%). Results suggest that feather mites are not parasites of birds, but rather that they hold a commensalistic relationship where feather mites may benefit from feeding on uropygial gland secretions of their hosts and birds do not seem to obtain a great benefit from the presence of feather mites.  相似文献   

4.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine-tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non-moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather-level decisions on where to live, contradicting the current view that mites perform "mass", or "blind" movements across wing feathers. Moreover, our findings indicate that "rare" distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient-bird-feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

5.
ISMAEL GALVÁN  & JUAN J. SANZ 《Ibis》2006,148(4):687-697
Plumicolous feather mites are ectosymbiotic organisms that live on bird feathers. Despite their abundance and prevalence among birds, the ecology of the interaction between these organisms and their hosts is poorly known. As feather mites feed on oil that birds spread from their uropygial gland, it has been hypothesized, but never tested, that the number of feather mites increases with the size of the uropygial gland of their hosts. In this study the number of feather mites is considered with respect to uropygial gland size in a breeding population of Great Tits Parus major in order to test this hypothesis. As predicted, the number of feather mites correlated positively with the uropygial gland size of their hosts, showing for the first time that uropygial gland size can explain the variance in feather mite load among conspecifics. Previous studies relating feather mite load to plumage colour have suggested that feather mites may be parasitic or neutral. To confirm this, the yellowness of breast feathers was also assessed. However, the results ran in the opposite direction to that expected, showing a positive correlation between mite load and plumage yellowness, which suggests that further work is needed to give clear evidence for a specific nature of feather mites. However, Great Tits with higher mite loads had lower hatching and breeding success, which may support the idea that feather mites are parasites, although this effect must be taken with caution because it was only found in males. Age or sex effects were not found on the number of feather mites, and it is proposed that hormonal levels may not be sufficient to explain the variation in feather mite loads. Interestingly, a positive correlation was detected between uropygial gland size and plumage brightness, which could be a novel factor to take into account in studies of plumage colour.  相似文献   

6.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

7.
《PloS one》2014,9(9)
Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R) of the intensity and the prevalence of feather mites to partition within- and among-host species variance components. We compiled the largest dataset so far available: 119 Paleartic passerine bird species, 75,944 individual birds, ca. 1.8 million mites, seven countries, 23 study years. Several analyses and approaches were made to estimate R and adjusted repeatability (Radj) after controlling for potential confounding factors (breeding period, weather, habitat, spatial autocorrelation and researcher identity). The prevalence of feather mites was moderately repeatable (R = 0.26–0.53; Radj = 0.32–0.57); smaller values were found for intensity (R = 0.19–0.30; Radj = 0.18–0.30). These moderate repeatabilities show that prevalence and intensity of feather mites differ among species, but also that the high variation within species leads to considerable overlap among bird species. Differences in the prevalence and intensity of feather mites within bird species were small among habitats, suggesting that local factors are playing a secondary role. However, effects of local climatic conditions were partially observed for intensity.  相似文献   

8.
Feather mites (Astigmata: Analgoidea and Pterolichoidea) are among the most abundant and commonly occurring bird ectosymbionts. Basic questions on the ecology and evolution of feather mites remain unanswered because feather mite species identification is often only possible for adult males, and it is laborious even for specialized taxonomists, thus precluding large‐scale identifications. Here, we tested DNA barcoding as a useful molecular tool to identify feather mites from passerine birds. Three hundred and sixty‐one specimens of 72 species of feather mites from 68 species of European passerine birds from Russia and Spain were barcoded. The accuracy of barcoding and minibarcoding was tested. Moreover, threshold choice (a controversial issue in barcoding studies) was also explored in a new way, by calculating through simulations the effect of sampling effort (in species number and species composition) on threshold calculations. We found one 200‐bp minibarcode region that showed the same accuracy as the full‐length barcode (602 bp) and was surrounded by conserved regions potentially useful for group‐specific degenerate primers. Species identification accuracy was perfect (100%) but decreased when singletons or species of the Proctophyllodes pinnatus group were included. In fact, barcoding confirmed previous taxonomic issues within the P. pinnatus group. Following an integrative taxonomy approach, we compared our barcode study with previous taxonomic knowledge on feather mites, discovering three new putative cryptic species and validating three previous morphologically different (but still undescribed) new species.  相似文献   

9.
Parasites and other symbionts are crucial components of ecosystems, regulating host populations and supporting food webs. However, most symbiont systems, especially those involving commensals and mutualists, are relatively poorly understood. In this study, we have investigated the nature of the symbiotic relationship between birds and their most abundant and diverse ectosymbionts: the vane‐dwelling feather mites. For this purpose, we studied the diet of feather mites using two complementary methods. First, we used light microscopy to examine the gut contents of 1,300 individual feather mites representing 100 mite genera (18 families) from 190 bird species belonging to 72 families and 19 orders. Second, we used high‐throughput sequencing (HTS) and DNA metabarcoding to determine gut contents from 1,833 individual mites of 18 species inhabiting 18 bird species. Results showed fungi and potentially bacteria as the main food resources for feather mites (apart from potential bird uropygial gland oil). Diatoms and plant matter appeared as rare food resources for feather mites. Importantly, we did not find any evidence of feather mites feeding upon bird resources (e.g., blood, skin) other than potentially uropygial gland oil. In addition, we found a high prevalence of both keratinophilic and pathogenic fungal taxa in the feather mite species examined. Altogether, our results shed light on the long‐standing question of the nature of the relationship between birds and their vane‐dwelling feather mites, supporting previous evidence for a commensalistic–mutualistic role of feather mites, which are revealed as likely fungivore–microbivore–detritivore symbionts of bird feathers.  相似文献   

10.
Feather mites (Astigmata) are specialized parasites living on the plumage and skin of birds. The paper presents data on infestation of some passerines (Passeriformes) by feather mites in the south of Western Siberia (Omsk and Tyumen Provinces). We found 24 species of feather mites belonging to the families Analgidae, Dermoglyphidae, Pteronyssidae, Trouessartiidae, and Proctophyllodidae on 16 bird species. Among them, 19 species are common parasites of the passerine birds examined; five species were detected on atypical hosts. Ten mite species were recorded for the first time on the passerine species examined. Analysis of the distribution of abundant and common mite species on their hosts has demonstrated that the majority of the bird parasites possess a specific distribution pattern in the host plumage with preference for certain feather types. We have also obtained new data on host associations of several mite species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号