首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landscape pattern metrics are widely used for predicting habitat and species diversity. However, the relationship between landscape pattern and species diversity is typically measured at a single spatial scale, even though both landscape pattern, and species occurrence and community composition are scale‐dependent. While the effects of scale on landscape pattern are well documented, the effects of scale on the relationships between spatial pattern and species richness and composition are not well known. Here, our main goal was to quantify the effects of cartographic scale (spatial resolution and extent) on the relationships between spatial pattern and avian richness and community structure in a mosaic of grassland, woodland, and savanna in central Wisconsin. Our secondary goal was to evaluate the effectiveness of a newly developed tool for spatial pattern analysis, multiscale contextual spatial pattern analysis (MCSPA), compared to existing landscape metrics. Landscape metrics and avian species richness had quadratic, exponential, or logarithmic relationships, and these patterns were generally consistent across two spatial resolutions and six spatial extents. However, the magnitude of the relationships was affected by both resolution and extent. At the finer resolution (10‐m), edge density was consistently the best predictor of species richness, followed by an MCSPA metric that measures the standard deviation of woody cover across extents. At the coarser resolution (30‐m), NDVI was the best predictor of species richness by far, regardless of spatial extent. Another MCSPA metric that denotes the average woody cover across extents, together with percent of woody cover, were always the best predictors of variation in avian community structure. Spatial resolution and extent had varying effects on the relationships between spatial pattern and avian community structure. We therefore conclude that cartographic scale not only affects measures of landscape pattern per se, but also the relationships among spatial pattern, species richness, and community structure, often in complex ways, which reduces the efficacy of landscape metrics for predicting the richness and diversity of organisms.  相似文献   

2.
Abstract In studies of biodiversity, considerations of scale—the spatial or temporal domain to which data provide inference—are important because of the non-arithmetic manner in which species richness increases with area (and total abundance) and because fine-scale mechanisms (for example, recruitment, growth, and mortality of species) can interact with broad scale patterns (for example, habitat patch configuration) to influence dynamics in space and time. The key to understanding these dynamics is to consider patterns of environmental heterogeneity, including patterns produced by natural and anthropogenic disturbance. We studied how spatial variation in three aspects of biodiversity of terrestrial gastropods (species richness, species diversity, and nestedness) on the 16-ha Luquillo Forest Dynamics Plot (LFDP) in a tropical forest of Puerto Rico was affected by disturbance caused by Hurricanes Hugo and Georges, as well as by patterns of historic land use. Hurricane-induced changes in spatial organization of species richness differed from those for species diversity. The gamma components of species richness changed after the hurricanes and were significantly different between Hurricanes Hugo and Georges. Alpha and two beta components of species richness, one related to turnover among sites within areas of similar land use and one related to variation among areas of different land use, varied randomly over time after both hurricanes. In contrast, gamma components of species diversity decreased in indistinguishable manners after both hurricanes, whereas the rates of change in the alpha component of species diversity differed between hurricanes. Beta components of diversity related to turnover among sites declined after both hurricanes in a consistent fashion. Those related to turnover among areas with different historic land uses varied stochastically. The immediate effect of hurricanes was to reduce nestedness of gastropod assemblages. Thereafter, nestedness increased during post-hurricane secondary succession, and did so in the same way, regardless of patterns of historic land use. The rates of change in degree of nestedness during secondary succession were different after each hurricane as a result of differences in the severity and extent of the hurricane-induced damage. Our analyses quantified temporal changes in the spatial organization of biodiversity of gastropod assemblages during forest recovery from hurricane-induced damage in areas that had experienced different patterns of historic human land use, and documented the dependence of biodiversity on spatial scale. We hypothesize that cross-scale interactions, likely those between the local demographics of species at the fine scale and the landscape configuration of patches at the broad scale, play a dominant role in affecting critical transfer processes, such as dispersal, and its interrelationship with aspects of biodiversity. Cross-scale interactions have significant implications for the conservation of biodiversity, as the greatest threats to biodiversity arise from habitat modification and fragmentation associated with disturbance arising from human activities.  相似文献   

3.
Aims Anthropogenic activities have drastically increased nutrient availability, resulting in declines in species richness in many plant communities. However, most previous studies have explored only species-loss patterns and mechanisms over small sampling areas, so their results might overestimate species loss at larger spatial scales. The aim of this research was to explore species diversity change patterns and species-loss rates at multiple scales in alpine meadow communities following nutrient enrichment. Specifically, we asked two closely related questions: (i) do changes in species diversity and species-loss patterns differ among spatial scales? and (ii) how does community compositional dissimilarity and species turnover change among spatial scale?  相似文献   

4.
Aim To determine the empirical relationships between species richness and spatial turnover in species composition across spatial scales. These have remained little explored despite the fact that such relationships are fundamental to understanding spatial diversity patterns. Location South‐east Scotland. Methods Defining local species richness simply as the total number of species at a finer resolution than regional species richness and spatial turnover as turnover in species identity between any two or more areas, we determined the empirical relationships between all three, and the influence of spatial scale upon them, using data on breeding bird distributions. We estimated spatial turnover using a measure independent of species richness gradients, a fundamental feature which has been neglected in theoretical studies. Results Local species richness and spatial turnover exhibited a negative relationship, which became stronger as larger neighbourhood sizes were considered in estimating the latter. Spatial turnover and regional species richness did not show any significant relationship, suggesting that spatial species replacement occurs independently of the size of the regional species pool. Local and regional species richness only showed the expected positive relationship when the size of the local scale was relatively large in relation to the regional scale. Conclusions Explanations for the relationships between spatial turnover and local and regional species richness can be found in the spatial patterns of species commonality, gain and loss between areas.  相似文献   

5.
Predators significantly affect ecosystem functions, but our understanding of to what extent findings can be transferred from experiments and low‐diversity systems to highly diverse, natural ecosystems is limited. With a particular threat of biodiversity loss at higher trophic levels, however, knowledge of spatial and temporal patterns in predator assemblages and their interrelations with lower trophic levels is essential for assessing effects of trophic interactions and advancing biodiversity conservation in these ecosystems. We analyzed spatial and temporal variability of spider assemblages in tree species‐rich subtropical forests in China, across 27 study plots varying in woody plant diversity and stand age. Despite effects of woody plant richness on spider assemblage structure, neither habitat specificity nor temporal variability of spider richness and abundance were influenced. Rather, variability increased with forest age, probably related to successional changes in spider assemblages. Our results indicate that woody plant richness and theory predicting increasing predator diversity with increasing plant diversity do not necessarily play a major role for spatial and temporal dynamics of predator assemblages in such plant species‐rich forests. Diversity effects on biotic or abiotic habitat conditions might be less pronounced across our gradient from medium to high plant diversity than in previously studied less diverse systems, and bottom‐up effects might level out at high plant diversity. Instead, our study highlights the importance of overall (diversity‐independent) environmental heterogeneity in shaping spider assemblages and, as indicated by a high species turnover between plots, as a crucial factor for biodiversity conservation at a regional scale in these subtropical forests.  相似文献   

6.
Understanding the underlying mechanisms causing diversity patterns is a fundamental objective in ecology and science‐based conservation biology. Energy and environmental‐heterogeneity hypotheses have been suggested to explain spatial changes in ant diversity. However, the relative roles of each one in determining alpha and beta diversity patterns remain elusive. We investigated the main factors driving spatial changes in ant (Hymenoptera, Formicidae) species richness and composition (including turnover and nestedness components) along a 500 km longitudinal gradient in the Pampean region of Argentina. Ants were sampled using pitfall traps in 12 sample sites during the summer. We performed a model selection approach to analyse responses of ant richness and composition dissimilarity to environmental factors. Then, we computed a dissimilarity partitioning of the contributions of spatial turnover and nestedness to total composition dissimilarity. Temporal habitat heterogeneity and temperature were the primary factors explaining spatial patterns of epigean ant species richness across the Pampas. The distance decay in species composition similarity was best accounted by temperature dissimilarity, and turnover had the greatest contribution to the observed beta diversity pattern. Our findings suggest that both energy and environmental‐heterogeneity‐related variables are key factors shaping richness patterns of ants and niche‐based processes instead of neutral processes appear to be regulating species composition of ant assemblages. The major contribution of turnover to the beta diversity pattern indicated that lands for potential reconversion to grassland should represent the complete environmental gradient of the Pampean region, instead of prioritizing a single site with high species richness.  相似文献   

7.
Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai‐Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter‐ and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra‐ and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter‐ and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter‐ and intraspecific aggregation produces local spatial patterns that scale‐up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing.  相似文献   

8.
This study examined the latitudinal gradient of species diversity of rocky intertidal sessile assemblages on the slopes of rocks along the Northwestern Pacific coast of Japan, located between 31°N and 43°N, by explicitly incorporating an hierarchical spatial scale into the monitoring design. The specific questions were to examine: (1) whether there is a latitudinal gradient of regional diversity, (2) how spatial components of the regional diversity (local diversity and turnover diversity) vary with latitude depending on spatial scale, and (3) whether the latitudinal gradient differs between different measures of species diversity, i.e. species richness and Simpsons diversity index. We measured coverage and the presence or absence of all sessile organisms in a total of 150 census plots established at five shores in each of six regions. The results showed that there were clear latitudinal gradients in regional species richness and in species turnover among shores. However, these patterns were not reflected in smaller-scale local species richness. For Simpsons diversity index, there was no evidence of latitudinal clines either in regional diversity or in spatial components. These results suggest that relative abundance of common species does not vary along latitude, while the number of rare species increases with decreasing latitude.
An erratum to this article can be found at  相似文献   

9.
Incentivizing carbon storage can be a win‐win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade‐off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon‐diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km2 region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade‐offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon‐diversity trade‐offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity.  相似文献   

10.
Beta多样性通常指群落在时间和空间上物种组成的差异, 包括物种周转组分和物种丰富度差异组分。驱动beta多样性格局形成的生态过程决定了群落的时空动态, 然而关于beta多样性及其两个组分格局形成的驱动力还存在较多争议。以往研究表明, beta多样性的格局存在取样尺度的依赖性, 驱动其形成的生态过程在不同取样尺度下的相对重要性也随之改变。本研究以哀牢山亚热带中山湿性常绿阔叶林20 ha动态监测样地为研究对象, 在不同取样尺度上, 将样方间的Bray-Curtis指数分解为物种周转组分和物种丰富度差异组分, 通过典范冗余分析和方差分解的方法揭示环境过滤和扩散限制对于beta多样性及其两个组分格局形成的相对重要性及其尺度依赖性。结果表明: (1) beta多样性、物种周转组分和物种丰富度差异组分均随取样尺度的增大而减小。在不同取样尺度下, 物种周转组分对于beta多样性的贡献始终占主导地位。(2)随着取样尺度的增大, 环境过滤驱动beta多样性格局形成的相对重要性逐渐增加, 而扩散限制的相对重要性逐渐降低。本研究进一步证实了取样尺度在beta多样性格局形成及其驱动力定量评价中的重要性, 今后的研究需要进一步解析上述尺度效应的形成机制。  相似文献   

11.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

12.
Are there latitudinal gradients in species turnover?   总被引:4,自引:0,他引:4  
Aim To examine the effect on the observed relationship between spatial turnover and latitude of both the measure of beta diversity used and the method of analysis. Location The empirical analyses presented herein are for the New World. Methods We take the spatial distributions of the owls of the New World as an exemplar data set to investigate the patterns of beta diversity across latitudes revealed by different analytical methods. To illustrate the strengths and weaknesses of alternative measures of beta diversity and different analytical approaches, we also use a simple random distribution model, focusing in particular on the influence of richness gradients and landmass geometry. Results Our simple spatial model of turnover demonstrates that different combinations of analytical approach and measure of beta diversity can give rise to strikingly different relationships between turnover and latitude. The analyses of the bird data for the owls of the New World demonstrate that this observation extends to real data. Conclusions For the particular assemblage considered, we present strong evidence that species richness declines at higher latitudes, and there is also some evidence that species turnover is greater nearer the equator, despite conceptual and practical difficulties involved in analysing spatial patterns of species turnover. We suggest some ways of overcoming these difficulties.  相似文献   

13.
The interaction between land use and climate change is expected to strongly affect species distributions along high elevation landscapes. We aimed to test the effect of climatic variables on community metrics among five types of land use in a high elevation landscape. We described dung beetle spatial and temporal taxonomic and functional diversity patterns, and partitioned β‐diversity into turnover and nestedness components. The interaction between land use and daily period of activity mostly drives abundance, functional richness and functional diversity, but not dung beetle species richness. Unlike Neotropical lowlands, species richness and abundance in open environments are similar to those existing in forests. Temperature is an important predictor of abundance and functional divergence. There is a higher spatial component of the taxonomic β‐diversity, which is highly driven by species turnover. The temporal component of the taxonomic β‐diversity was strongly driven by nestedness, where night assemblages are sub‐sets, although not entirely, of diurnal assemblages. For functional diversity, the temporal β‐diversity was much higher than the spatial β‐diversity, but both were similarly represented by functional group turnover and nestedness. The composition of nocturnal and diurnal assemblages is clearly different, even more than the differences observed between habitats. However, taxonomic turnover is the dominant force between sampling sites while nestedness dominates the daily pattern. This means that forest habitats are unlikely to act as shelters for grassland species under a scenario of rising temperature.  相似文献   

14.
Sonali Saha 《Ecography》2003,26(1):80-86
The regressive succession model hypothesizes tropical savanna-woodlands to be a degraded stage of primary deciduous forests. Species diversity, richness and evenness of woody species in savanna-woodlands, secondary deciduous forests and mature deciduous forests of central India were compared to test if the regressive succession explained pattern in species richness, diversity, functional diversity and basal area. At the plot scale (0.1 ha) secondary deciduous forests and savanna-woodlands had similar species diversity, a pattern not consistent with the regressive model of deciduous forest succession, and mature deciduous forests had greater species diversity and richness (p<0.05). When examined at a larger scale or community scale by pooling all plots within a community type, the trend in diversity persisted even with greater effort allocated to sampling of secondary deciduous forests. Species richness at the community scale was greatest in secondary deciduous forest as expected from species area relationship. The communities shared 28 woody species but the species composition was significantly different between the communities. I suggest that conservation of tropical deciduous forests based on regressive succession model is problematic.  相似文献   

15.
Environmental change has reshuffled communities often causing taxonomic homogenization rather than differentiation. Some studies suggest that this increasing similarity of species composition between communities is accompanied by an increase in similarity of trait composition—functional homogenization—although different methodologies have failed to come to any consistent conclusions. Functional homogenization could have a large effect on ecosystem functioning and stability. Here, we use the general definition of homogenization as “reduced spatial turnover over time” to compare changes in Simpson's beta diversity (taxonomic turnover) with changes in Rao's quadratic entropy beta diversity (functional turnover) in British breeding birds at three spatial scales. Using biotic and climatic variables, we identify which factors may predispose a site to homogenization. The change in turnover measures between two time periods, 20 years apart, was calculated. A null model approach was taken to identify occurrences of functional homogenization and differentiation independent of changes in taxonomic turnover. We used conditional autoregressive models fitted using integrated nested Laplace approximations to determine how environmental drivers and factors relating to species distributions affect changes in spatial turnover of species and functional diversity. The measurement of functional homogenization affects the chance of rejection of the null models, with many sites showing taxonomic homogenization unaccompanied by functional homogenization, although occurrence varies with spatial scale. At the smallest scale, while temperature‐related variables drive changes in taxonomic turnover, changes in functional turnover are associated with variation in growing degree days; however, changes in functional turnover become more difficult to predict at larger spatial scales. Our results highlight the multifactorial processes underlying taxonomic and functional homogenization and that redundancy in species traits may allow ecosystem functioning to be maintained in some areas despite changes in species composition.  相似文献   

16.
Beta diversity (i.e. species turnover rate across space) is fundamental for understanding mechanisms controlling large‐scale species richness patterns. However, the influences on beta diversity are still a matter of debate. In particular, the relative role of environmental and spatial processes (e.g. environmental niche versus dispersal limitation of species) remains elusive, and the influence of species range size has been poorly tested. Here, using distribution maps of 11 405 woody species in China (ca 9.6 × 106 km2), we investigated 1) the geographical and directional patterns of beta diversity for all woody species and species with different range sizes, and 2) compared the effects of environmental and spatial processes on these patterns. Beta diversity was calculated as the decay of similarity in species composition with increasing distance. Variables representing environmental energy, water availability, climatic seasonality, habitat heterogeneity and human activities were used to evaluate the effects of environmental processes, while spatial distance was used to assess the influence of spatial processes. The results indicated significant directional patterns of beta diversity: the similarity decay along the latitudinal gradient was 1.6–2.3 times faster than that along the longitudinal gradient. Beta diversity also increased with the decrease of species range size. As compared with spatial processes, environmental processes had stronger effects on longitudinal beta diversity and on the beta diversity of widely‐ranged species. This was opposite to the larger influence of spatial processes on latitudinal beta diversity and the beta diversity of narrowly‐ranged species. These results suggest that the distributions of narrowly‐ranged woody species in China may have not reached equilibrium with their environmental niches due to dispersal limitation induced by China's topography and/or their low dispersal ability. The projected rapid climatic changes will likely endanger such species. Species dispersal processes should be taken into account in future conservation strategies in China.  相似文献   

17.
Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.  相似文献   

18.
The biodiversity of agricultural landscapes has been noticeably affected by rapid urbanization. Although many studies have examined species diversity per unit area (alpha diversity), knowledge about the patterns of species turnover (beta diversity) in urban areas remains limited. Furthermore, most beta diversity studies have focused on spatial heterogeneity; however, losses of temporal heterogeneity resulting from urbanization remain limited. In this study, we examined how urbanization is associated with decreases in the seasonal heterogeneity of species composition, which could be used as an indicator of the loss of seasonality by ecologists and policy makers aiming to conserve biodiversity. We investigated (1) changes in species richness based on seasonal averages (alpha diversity) and (2) the seasonal turnover of species composition (beta diversity) for flowering plants and butterflies along a rural-urban gradient in semi-natural grasslands. The response variables were alpha and beta diversity for flowering plants and butterflies, and the explanatory variables were urban areas within a 1-km radius of the center of each site. Increasing urban area caused both the seasonal alpha and beta diversity of flowering plants and butterflies to decline. These results supported the homogenization hypothesis for the seasonality of plants and butterflies in semi-natural grasslands of dominant urban areas in East Asia. Future studies should focus on investigating how urbanization is causing both declines in seasonality and changes in the spatial heterogeneity of species composition and associated biodiversity loss. Ecologists and policy makers should focus on developing strategies to halt the loss of temporal biological heterogeneity to maintain biodiversity.  相似文献   

19.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

20.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号