首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

Understanding and predicting ecosystem functioning such as biomass accumulation requires an accurate assessment of large-scale patterns of biomass distribution and partitioning in relation to climatic and soil environments.

Methods

We sampled above- and belowground biomass from 26 sites spanning 1500 km in Inner Mongolian grasslands, compared the difference in aboveground, belowground biomass and below-aboveground biomass ratio (AGB, BGB, and B/A, respectively) among meadow steppe, typical steppe, and desert steppe types. The relationships between AGB, BGB, B/A and climatic and soil environments were then examined.

Results

We found that AGB and BGB differed significantly among three types of grasslands while B/A did not differ. Structural equation model analyses indicated that mean annual precipitation was the strongest positive driver for AGB and BGB. AGB was also positively associated with soil organic carbon, whereas B/A was positively associated with total soil nitrogen.

Conclusions

These results indicated that precipitation positively influence plant production in Inner Mongolian grasslands. Contrary to the prediction from the optimal partitioning hypothesis, biomass allocation to belowground increased with soil total nitrogen, suggesting that more productive sites may increase belowground allocation as an adaptive strategy to potentially high fire frequencies.  相似文献   

2.
Aboveground biomass (AGB) and belowground biomass (BGB) allocation and productivity–richness relationship are controversial. Here, we assessed AGB and BGB allocation and the productivity–richness relationship at community level across four grassland types based on the biomass data collected from 80 sites across the Qinghai Plateau during 2011–2012. The reduced major axis regression and general linear models were used and showed that (a) the median values of AGB were significantly higher in alpine meadow than in other three grassland types; the ratio of root to shoot (R/S) was significantly higher in desert grassland (36.06) than intemperate grassland (16.60), alpine meadow (13.35), and meadow steppe (19.46). The temperate grassland had deeper root distribution than the other three grasslands, with about 91.45% roots distributed in the top 30 cm soil layer. (b) The slopes between log AGB and log BGB in the temperate grassland and meadow steppe were 1.09 and 1, respectively, whereas that in the desert grassland was 1.12, which was significantly different from the isometric allocation relationship. A competitive relationship between AGB and BGB was observed in the alpine meadow with a slope of ?1.83, indicating a trade‐off between AGB and BGB in the alpine meadow. (c) A positive productivity–richness relationship existed across the four grassland types, suggesting that the positive productivity–richness relationship might not be affected by the environmental factors at the plant location. Our results provide a new insight for biomass allocation and biodiversity–ecosystem functioning research.  相似文献   

3.
There are two important allocation hypotheses in plant biomass allocation: allometric and isometric. We tested these two hypotheses in an alpine steppe using plant biomass allocation under nitrogen (N) addition and precipitation (Precip) changes at a community level. An in situ field manipulation experiment was conducted to examine the two hypotheses and the responses of the biomass to N addition (10 g N m?2 y?1) and altered Precip (±50% precipitation) in an alpine steppe on the Qinghai–Tibetan Plateau from 2013 to 2016. We found that the plant community biomass differed in its response to N addition and reduced Precip such that N addition significantly increased aboveground biomass (AGB), while reduced Precip significantly decreased AGB from 2014 to 2016. Moreover, reduced Precip enhanced deep soil belowground biomass (BGB). In the natural alpine steppe, the allocation between AGB and BGB was consistent with the isometric hypotheses. In contrast, N addition or altered Precip enhanced biomass allocation to aboveground, thus leading to allometric growth. More importantly, reduced Precip enhanced biomass allocation into deep soil. Our study provides insight into the responses of alpine steppes to global climate change by linking AGB and BGB allocation.  相似文献   

4.
Aims Belowground to aboveground biomass (BGB/AGB) ratio is a highly valued parameter of the terrestrial carbon cycle and productivity. However, it remains far from clear whether plant biomass partitioning to aboveground and belowground is isometric (equal partitioning) or allometric (unequal partitioning) at community levels and what factors are necessary in order to regulate the partitioning. This study aimed to comprehensively find out the patterns of biomass partitioning and their regulatory factors across forests in China.Methods The data of AGB and BGB were compiled from 1542 samples for communities across forests in China. Standardized major axis regression was conducted to examine whether AGB and BGB were allocated isometrically or allometrically at a community level. Redundancy analysis was used to analyze the relationships of BGB/AGB ratio with climatic factors and soil properties.Important findings We found that the slopes of the relationship between logAGB and logBGB were not always comparable to 1.0 (isometric allocation) at community levels, including primary forest, secondary forest, and planted forest. Meanwhile, samples in clay, loam, and sand soil types also presented the same phenomenon. Furthermore, the radically different allocations of AGB and BGB were found in northern and southern China. Environmental factors totally explained 3.86% of the variations in the BGB/AGB ratio at the community level, which include the mean annual precipitation, mean annual temperature, potential water deficit index, soil carbon content, soil nitrogen content, soil clay, soil loam, soil sand, soil pH, and soil bulk density. In addition, the environmental factors also have effects on the BGB/AGB ratio in other categories. The patterns revealed in this study are helpful for better understanding biomass partitioning and spreading the carbon circle models.  相似文献   

5.
《植物生态学报》2018,42(3):327
草地生态系统是巨大的碳库, 在全球碳循环中起着重要的作用。该研究以内蒙古中温带草地区典型草原和荒漠草原为研究对象, 测定了两种草原类型围封与放牧后地上生物量碳密度、地下生物量碳密度和土壤碳密度, 探讨围封对两种草原类型植被-土壤系统碳密度的影响。结果表明: (1)围封显著地增加了典型草原地上和地下生物量的碳密度, 对荒漠草原地上生物量碳密度增加影响显著, 对地下生物量碳密度增加影响不显著; (2)围封显著地增加了典型草原土壤碳密度, 使荒漠草原土壤碳密度有增加的趋势, 但影响不显著; (3)典型草原围封样地地下生物量和土壤碳密度的垂直分布显著高于放牧样地, 而荒漠草原围封样地地下生物量和土壤碳密度的垂直分布与放牧样地的差异不显著; (4)围封分别提高了典型草原和荒漠草原植被-土壤系统碳密度的2.2倍和1.6倍, 典型草原和荒漠草原分别有超过65%和89%的碳储存在土壤中, 两种草原类型的地下生物量碳库均占总生物量碳库的90%以上。研究结果表明围封能够有效地增加草原生态系统的碳储量。  相似文献   

6.
草地生态系统是巨大的碳库, 在全球碳循环中起着重要的作用。该研究以内蒙古中温带草地区典型草原和荒漠草原为研究对象, 测定了两种草原类型围封与放牧后地上生物量碳密度、地下生物量碳密度和土壤碳密度, 探讨围封对两种草原类型植被-土壤系统碳密度的影响。结果表明: (1)围封显著地增加了典型草原地上和地下生物量的碳密度, 对荒漠草原地上生物量碳密度增加影响显著, 对地下生物量碳密度增加影响不显著; (2)围封显著地增加了典型草原土壤碳密度, 使荒漠草原土壤碳密度有增加的趋势, 但影响不显著; (3)典型草原围封样地地下生物量和土壤碳密度的垂直分布显著高于放牧样地, 而荒漠草原围封样地地下生物量和土壤碳密度的垂直分布与放牧样地的差异不显著; (4)围封分别提高了典型草原和荒漠草原植被-土壤系统碳密度的2.2倍和1.6倍, 典型草原和荒漠草原分别有超过65%和89%的碳储存在土壤中, 两种草原类型的地下生物量碳库均占总生物量碳库的90%以上。研究结果表明围封能够有效地增加草原生态系统的碳储量。  相似文献   

7.
Ni  Jian 《Plant Ecology》2004,174(2):217-234
Data on field biomass measurements in temperate grasslands of northern China (141 samples from 74 sites) were obtained from 23 Chinese journals, reports and books. Net primary productivity (NPP) of grasslands was estimated using three algorithms (peak live biomass, peak standing crop and maximum minus minimum live biomass), respectively, based on availability of biomass data in sites. 135 samples which have aboveground biomass (AGB) measurements, have peak AGB ranges from 20 to 2021 g m–2 (mean = 325.3) and the aboveground NPP (ANPP) ranges from 15 to 1647.1 g m–2 per year (mean = 295.7). 72 samples which have belowground biomass (BGB) measurements, have peak BGB ranges from 226.5 to 12827.5 g m–2 (mean = 3116) and the belowground NPP (BNPP) ranges from 15.8 to 12827.5 g m–2 per year (mean = 2425.6). In total 66 samples have the total NPP (TNPP), ranging from 55.3 to 13347.8 g m–2 per year (mean = 2980.3). Mean peak biomass and NPP varied from different geographical sampling locations, but they had a general rough regularity in ten grasslands. Meadow, mountain and alpine grasslands had high biomass and NPP (sometimes including saline grassland). Forested steppe, saline grassland and desert had median values. Meadowed and typical steppes had low biomass and NPP (sometimes including desert). The lowest biomass and NPP occurred in deserted steppe and stepped desert. Grassland ANPP has significant positive relationships with annual and summer precipitation as well as summer temperature (all p<0.01). However, grassland BNPP and TNPP have more significant negative relationships with summer temperature (p<0.01) than with annual temperature (p<0.05). The analysis of climate – productivity correlations implied that aboveground productivity is more controlled by rainfall, whereas belowground and total productivity is more influenced by temperature in the temperate grasslands of northern China. The present study might underestimate grassland NPP in northern China due to limitation of biomass measurements. Data on relative long-term aboveground and belowground biomass dynamics, as well as data of standing dead matter, litterfall, decomposition and turnover, are required if grassland NPP is to be more accurately estimated and the role of temperate grasslands in the regional to global carbon cycles is to be fully appreciated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
地下根系是草原生态系统的重要组成部分,其生物量及其净生产力对地下碳库具有直接与间接作用,分析地下生物量季节动态与周转对深入揭示草原生态系统碳库动态及其固碳速率与潜力具有重要意义。应用钻土芯法对不同利用方式或管理措施下内蒙古草甸草原、典型草原地下生物量动态及其与温度、降水的相关性研究表明:草甸草原和典型草原地上生物量季节动态均为单峰型曲线,与上月降水显著正相关(P0.05),但地下生物量季节动态表现为草甸草原呈"S"型曲线,典型草原则是双峰型曲线,与温度、降水相关性均不显著(P0.05);两种草原根冠比和地下生物量垂直分布均为指数函数曲线,根茎型草原地下生物量集中在土壤0—5 cm,丛生型草原地下生物量集中于土壤5—10 cm,根冠比值在生长旺季(7—8月份)最小。草甸草原地下净生产力及碳储量范围分别为2167—2953 g m-2a-1和975—1329 gC m-2a-1,典型草原为2342—3333 g m-2a-1和1054—1450 gC m-2a-1,地下净生产力及其碳储量约为地上净生产力及其碳储量的10倍,具有较大的年固碳能力,且相对稳定;地下净生产力与地上净生产力呈显著负相关性(P0.05);地下生物量碳库是地上生物量碳库的10倍左右,适度放牧可增加地下生产力,但长期过度放牧显著降低其地下生物量与生产力,并使其垂直分布趋向于浅层化。  相似文献   

9.
Grazing is an important modulator of both plant productivity and biodiversity in grassland community, yet how to determine a suitable grazing intensity in alpine grassland is still controversy. Here, we explore the effects of different grazing intensities on plant biomass and species composition, both at community level and functional group level, and examines the productivity–species richness relationship under four grazing patterns: no grazing (CK), light grazing (LG), moderate grazing, (MG) and heavy grazing (HG), attempt to determine a suitable grazing intensity in alpine grassland. The results were as follows. The total aboveground biomass (AGB) reduced with increasing grazing intensity, and the response of plant functional groups was different. AGB of both sedges and legumes increased from MG to HG, while the AGB of forbs reduced sharply and the grass AGB remained steady. There was a significant positive relationship between productivity and species richness both at community level and functional group level. In contrast, the belowground biomass (BGB) showed a unimodal relationship from CK to HG, peaking in MG (8,297.72 ± 621.29 g/m2). Interestingly, the grassland community tends to allocate more root biomass to the upper soil layer under increasing grazing intensities. Our results suggesting that moderate levels of disturbance may be the optimal grassland management strategy for alpine meadow in terms of root production.  相似文献   

10.
李琪琪  黄小娟  李岚  常生华  侯扶江 《生态学报》2023,43(15):6131-6142
划破是草原改良的基础措施之一,划破强度是划破措施的关键环节,划破对草原健康持续管理有重要意义。目前的研究主要集中在划破对植物群落结构和生产力的影响上,然而草原植物群落与土壤水分对划破强度的响应尚不清楚。在黄土高原典型草原开展不同程度的草地划破试验,探究不同划破强度(27.4%、46.3%和61.9%)对草地植物群落物种多样性、生物量和土壤水分的影响。结果表明:3个划破强度下划破带物种丰富度显著低于未划破带1-3种/m2,划破带和未划破带群落相似性分别低于整区23.85%-119.23%和44.43%-84.55%。地上生物量随物种丰富度的增加而增大,且地上生物量与Simpson指数和Shannon Weiner指数显著负相关。3个划破强度下未划破带地下生物量和总生物量分别高于划破带88.2%-134.6%、52.4%-67.8%、2.5%-16.6%和103.9%-152.9%、59.3%-75.8%、9.1%-22.6%。植物群落物种丰富度和地上生物量随划破强度的增加呈"驼峰"型曲线变化,当划破强度分别为43.7%-55.3%和43.8%-45.7%时,植物群落物种丰富度和生物量均最高。本试验阐明了划破对典型草原植物群落特征和土壤水分的作用机制,研究结果为采用划破措施实现草地培育和草原修复提供了科学依据,对保护草地生物多样性和提高生产力具有重要意义。  相似文献   

11.
Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.  相似文献   

12.
Although many empirical experiments have shown that increasing degradation results in lower aboveground biomass (AGB), our knowledge of the magnitude of belowground biomass (BGB) for individual plants is a prerequisite for accurately revealing the biomass trade‐off in degraded grasslands. Here, by linking the AGB and BGB of individual plants, species in the community, and soil properties, we explored the biomass partitioning patterns in different plant functional groups (grasses of Stipa capillacea and forbs of Anaphalis xylorhiza). Our results indicated that 81% and 60% of the biomass trade‐off variations could be explained by environmental factors affecting grasses and forbs, respectively. The change in community species diversity dominated the biomass trade‐off via either direct or indirect effects on soil properties and biomass. However, the community species diversity imparted divergent effects on the biomass trade‐off for grasses (scored at −0.72) and forbs (scored at 0.59). Our findings suggest that plant communities have evolved two contrasting strategies of biomass allocation patterns in degraded grasslands. These are the “conservative” strategy in grasses, in which plants with larger BGB trade‐off depends on gigantic roots for soil resources, and the “opportunistic” strategy in forbs, in which plants can adapt to degraded lands using high variation and optimal biomass allocation.  相似文献   

13.
Aims Grassland is the most widely distributed vegetation type on the Xizang Plateau. Accurate remote sensing estimation of the grassland aboveground biomass (AGB) in this region is influenced by the types of vegetation indexes (VIs) used, the grain size (resolution) of the remote sensing data and the targeted ecosystem features. This study attempts to answer the following questions: (i) Which VI can most accurately reflect the grassland AGB distribution on the Xizang Plateau? (ii) How does the grain size of remote sensing imagery affect AGB reflection? (iii) What is the spatial distribution pattern of the grassland AGB on the plateau and its relationship with the climate?Methods We investigated 90 sample sites and measured site-specific AGBs using the harvest method for three grassland types (alpine meadow, alpine steppe and desert steppe). For each sample site, four VIs, namely, Normalized Difference VI (NDVI), Enhanced VI, Normalized Difference Water Index (NDWI) and Modified Soil-Adjusted VI (MSAVI) were extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) products with grain sizes of 250 m and 1 km. Linear regression models were employed to identify the best estimator of the AGB for the entire grassland and the three individual grassland types. Paired Wilcoxon tests were applied to assess the grain size effect on the AGB estimation. General linear models were used to quantify the relationships between the spatial distribution of the grassland AGB and climatic factors.Important findings The results showed that the best estimator for the entire grassland AGB on the Xizang Plateau was MSAVI at a 250 m grain size (MSAVI 250 m). For each individual grassland type, the best estimator was MSAVI at a grain size of 250 m for alpine meadow, NDWI at a grain size of 1 km for alpine steppe and NDVI at a grain size of 1 km for desert steppe. The explanation ability of each VI for the grassland AGB did not significantly differ for the two grain sizes. Based on the best fit model (AGB =-10.80 + 139.13 MSAVI 250 m), the spatial pattern of the grassland AGB on the plateau was characterized. The AGB varied from 1 to 136g m ?2. Approximately 59% of total spatial variation in the AGB for the entire grassland was explained by the combination of the mean annual precipitation (MAP) and mean annual temperature. The explanatory power of MAP was weaker for each individual grassland type than that for the entire grassland. This study illustrated the high efficiency of the VIs derived from MODIS data in the grassland AGB estimation on the Xizang Plateau due to the vegetation homogeneity within a 1×1 km pixel in this region. Furthermore, MAP is a primary driver on the spatial variation of AGB at a regional scale.  相似文献   

14.
The Qinghai–Tibet Plateau (QTP) is particularly sensitive to global climate change, especially to elevated temperatures, when compared with other ecosystems. However, few studies use long‐term field measurements to explore the interannual variations in plant biomass under climate fluctuations. Here, we examine the interannual variations of plant biomass within two vegetation types (alpine meadow and alpine shrub) during 2008–2017 and their relationships with climate variables. The following results were obtained. The aboveground biomass (AGB) and belowground biomass (BGB) response differently to climate fluctuations, the AGB in KPM was dominated by mean annual precipitation (MAP), whereas the AGB in PFS was controlled by mean annual air temperature (MAT). However, the BGB of both KPM and PFS was only weakly affected by climate variables, suggesting that the BGB in alpine ecosystems may remain as a stable carbon stock even under future global climate change. Furthermore, the AGB in PFS was significantly higher than KPM, while the BGB and R/S in KPM were significantly higher than PFS, reflecting the KPM be more likely to allocate more photosynthates to roots. Interestingly, the proportion of 0–10 cm root biomass increased in KPM and PFS, whereas the other proportions both decreased, reflecting a shift in biomass toward the surface layer. Our results could provide a new sight for the prediction how alpine ecosystem response to future climate change.  相似文献   

15.
Plant biomass is a key parameter for estimating terrestrial ecosystem carbon (C) stocks, which varies greatly as a result of specific environmental conditions. Here, we tested environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. We found that above-ground biomass (AGB) and below-ground biomass (BGB) had a similar change trend in the order of Stipa bungeana > Leymus secalinus > Artemisia sacrorum > Artemisia scoparia, whereas shoot ratio (R/S) displayed an opposite change trend. There was a significantly positive linear relationship between the AGB and BGB, regardless of plant species (p < 0.05). Furthermore, more than 50% of the AGB were found in 20–50 cm of plant height in Compositae plants (A. sacrorum, A. scoparia), whereas over 60% of the AGB were found in 20–80 cm of plant height in Gramineae plants (S. bungeana, L. secalinus). For each plant species, more than 75% of the BGB was distributed in 0–10 cm soil depth, and 20% was distributed in 10–20 cm soil depth, while less than 5% was distributed in 20–40 cm soil depth. Further, AGB and BGB were highly affected by environmental driving factors (soil properties, plant traits, topographic properties), which were identified by the structural equation model (SEM) and the generalized additive models (GAMs). In addition, AGB was directly affected by plant traits, and BGB was directly affected by soil properties, and soil properties associated with plant traits that affected AGB and BGB through interactive effects were 9.12% and 3.59%, respectively. However, topographic properties had a weak influence on ABG and BGB (as revealed by the lowest total pathway effect). Besides, soil organic carbon (SOC), soil microbial biomass carbon (MBC), and plant height had a higher relative contribution to AGB and BGB. Our results indicate that environmental driving factors affect plant biomass in natural grassland in the Loess Plateau.  相似文献   

16.
Soil nutrients strongly influence biomass allocation. However, few studies have examined patterns induced by soil C:N:P stoichiometry in alpine and arid ecosystems. Samples were collected from 44 sites with similar elevation along the 220‐km transect at spatial intervals of 5 km along the northern Tibetan Plateau. Aboveground biomass (AGB) levels were measured by cutting a sward in each plot. Belowground biomass (BGB) levels were collected from soil pits in a block of 1 m × 1 m in actual root depth. We observed significant decreases in AGB and BGB levels but increases in the BGB:AGB ratio with increases in latitude. Although soil is characterized by structural complexity and spatial heterogeneity, we observed remarkably consistent C:N:P ratios within the cryic aridisols. We observed significant nonlinear relationships between the soil N:P and BGB:AGB ratios. The critical N:P ratio in soils was measured at approximately 2.0, above which the probability of BGB:AGB response to nutrient availability is small. These findings serve as interesting contributions to the global data pool on arid plant stoichiometry, given the previously limited knowledge regarding high‐altitude regions.  相似文献   

17.
In vegetated terrestrial ecosystems, carbon in below- and aboveground biomass (BGB, AGB) often constitutes a significant component of total-ecosystem carbon stock. Because carbon in the BGB is difficult to measure, it is often estimated using BGB to AGB ratios. However, this ratio can change markedly along resource gradients, such as water availability, which can lead to substantial errors in BGB estimates. In this study, BGB and AGB sampling was carried out in Eucalyptus populnea-dominated woodland communities of northeast Australia to examine patterns of BGB to AGB ratio and vertical root distribution at three sites along a rainfall gradient (367, 602, and 1,101 mm). At each site, a vegetation inventory was undertaken on five transects (100 × 4 m), and trees representing the E. populnea vegetation structure were harvested and excavated to measure aboveground and coarse-root (diameter of at least 15 mm) biomass. Biomass of fine and small roots (diameter less than 15 mm) at each site was estimated from 40 cores sampled to 1 m depth. The BGB to AGB ratio of E. populnea-dominated woodland plant communities declined from 0.58 at the xeric end to 0.36 at the mesic end of the rainfall gradient. This was due to a marked decline in AGB with increased aridity whereas the BGB was relatively stable. The vertical distribution of fine roots in the top 1 m of soil varied along the rainfall gradient. The mesic sites had more fine-root biomass (FRB) in the upper soil profile and less at depth than the xeric site. Accordingly, at the xeric site, a much larger proportion of FRB was found at depth compared to the mesic sites. The vertical distribution patterns of small roots of the E. populnea woodland plant communities were consistently )-shaped, with the highest biomass occurring at 15–30-cm depth. The potential significance of such a rooting pattern for grass–tree and shrub–tree co-existence in these ecosystems is discussed. Overall, our results revealed marked changes in BGB to AGB ratio of E. populnea woodland communities along a rainfall gradient. Because E. populnea woodlands cover a large area (96 M ha), their contribution to continental-scale carbon sequestration and greenhouse gas emission can be substantial. Use of the rainfall-zone-specific ratios found in this study, in lieu of a single generic ratio for the entire region, will significantly improve estimates of BGB carbon stocks in these woodlands. In the absence of more specific data, our results will also be relevant in other regions with similar vegetation and rainfall gradients (that is, arid and semiarid woodland ecosystems).  相似文献   

18.
杨秀静  黄玫  王军邦  刘洪升 《生态学报》2013,33(7):2032-2042
青藏高原草地生物量大部分分布于地下,地下生物量在其碳循环研究中起着重要的作用.基于大规模野外样地调查数据,分析比较了青藏高原南北和东西样带上草地地下生物量与环境因子的相关关系,探讨了环境因子对地下生物量控制作用的区域差异.研究结果表明:对于所有采样点而言,青藏高原草地地下生物量的环境控制因素主要有土壤含水量、表层土壤有机碳和全氮含量.通过比较南北和东西样带研究结果发现,草地地下生物量与土壤含水量、土壤表层有机碳和全氮含量相关的显著性水平,在东西样带上明显高于南北样带.同时,东西样带上草地地下生物量与降水量有显著正相关关系,这种关系在南北样带上不显著,表明水分对东西样带草地地下生物量的控制作用较强.气温与南北样带草地地下生物量呈显著负相关,但与东西样带草地地下生物量相关不显著,由此说明环境因子对青藏高原草地地下生物量的控制存在显著区域差异.  相似文献   

19.
Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta‐analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta‐analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P‐induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future.  相似文献   

20.
徐满厚  刘敏  翟大彤  薛娴  彭飞  尤全刚 《生态学报》2016,36(18):5759-5767
以青藏高原高寒草甸为研究区,设置模拟增温实验样地,于2010年开始持续增温,2012和2013年调查植被地上-地下生物量,探讨气候变暖背景下高寒草甸生物量的动态变化及其与环境因子的关系。结果表明:(1)增温处理下地上-地下生物量与根冠比的中值和平均值大于对照,其中地下生物量(变异系数为0.30)的增加幅度大于地上生物量(变异系数为0.27),根冠比的变异系数(0.33)大于地上-地下生物量,这表明增温可导致高寒草甸植被生物量分配出现差异。(2)地上-地下生物量呈极显著的幂指数函数关系(R~2=0.147,P0.001),表现为异速生长,但在增温处理下异速生长出现减缓(R~2=0.102,P0.05)。(3)地上生物量受深层土壤水分和浅层土壤温度影响较大,地下生物量受深层土壤水分和深层土壤温度影响较大;土壤温度对地上-地下生物量的影响强于土壤水分,表现为20 cm深度土壤温度对地上生物量(R=0.582,P0.01)和根冠比(R=-0.238,P0.05)影响较大,60 cm深度土壤温度对地下生物量影响较大(R=0.388,P0.01),100 cm深度土壤水分对地上生物量(R=0.423,P0.01)和地下生物量(R=0.245,P0.05)影响较大,这说明增温导致浅层土壤温度对生物量分配产生影响,使生物量更多分配到地上部分,而冻土融化致使深层土壤水分对生物量产生影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号