首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
叶片气孔在水分生理方面的研究报道较多,但对构成气孔的两个保卫细胞研究的甚少。本文就小麦叶片气孔保卫细胞大小的测定方法及其应用的初步研究结果介绍如下,供参考。 (一)小麦叶片气孔保卫细胞的观察剪取小麦叶片,用纸包好携回室内。将叶片放在载玻片中央,叶片下表皮向上,左手食指压住叶片一端,右手握解剖刀,先沾一下水,轻刮叶片,一直刮去下表皮和叶肉,仅留下一层像葱皮一样薄的无色的上表皮为止。然后放在普通光学显微镜下,观测气孔保卫细胞。保卫细胞长度可采用目镜刻度换算法(目镜测微尺是具有刻  相似文献   

2.
马龙  李桂林  李师鹏  蒋苏 《植物学报》2020,55(5):596-604
整体透明观察技术是植物形态发育研究的基础手段之一, 是无需制作切片直接观察植物体内部形态结构的有效方法。该技术采用高折射率介质降低光在样品中的散射, 提高光通量, 增加视野深度, 从而实现组织样品透明观察。然而透明剂能改变透明液的渗透势和pH值, 从而对细胞形态保持产生负面影响。目前, 针对植物叶片和胚珠已建立了相对成熟的整体透明观察体系, 但根尖由于细胞壁较薄, 现有的整体透明方法常导致细胞形态改变, 不确定性增加(如根尖整体形态改变和细胞发生严重的质壁分离)。该研究以拟南芥(Arabidopsis thaliana)幼苗为实验材料, 通过检测根尖形态、细胞质壁分离情况和细胞清晰度, 对常用的透明液组分、pH值和透明时间进行优化, 旨在建立一种适用于根尖等较脆弱组织材料的整体透明方法。  相似文献   

3.
本文以‘摩尔多瓦’葡萄叶片为试验材料,采用组织透明法观察了葡萄叶片生长过程中叶片表皮细胞、气孔和叶脉形态结构的变化,测定与气孔和叶脉功能相关的生理指标变化,比较了组织透明法、指甲油法和撕取法在观察葡萄叶片气孔上的实验效果。结果表明:组织透明法能够清晰观察到葡萄叶片生长过程中叶片表皮细胞、气孔和叶脉形态结构的变化。相对于指甲油法、撕取法,组织透明法操作简单,且能保持组织完整性,提升观察叶片细胞结构的实验效果。从叶片生长过程中气孔形态结构变化规律来看,葡萄嫩叶齿尖存在大量的大气孔,而叶片中部只观察到中央大气孔和正在发育的气孔保卫细胞母细胞。随着叶片生长,叶片气孔保卫细胞母细胞逐渐发育形成成熟气孔,叶片末端叶脉也是随叶片生长而生长,叶脉密度逐渐增加,提高了树体往叶片供水的效率。从与气孔和叶脉功能相关的各项生理指标变化来看,气孔导度随着气孔逐渐形成和成熟而逐渐升高,但叶片含水量和水势下降,有利于拉升水分和养分从根系往地上树体各器官运输,满足整个植株生长发育的需要。  相似文献   

4.
为探讨NO对He-Ne激光和增强UV-B辐射小麦(Triticum aestivuml)气孔运动的作用机理,采用低剂量(5 mW.mm-2)He-Ne激光和增强(10.08 kJ.m-2.d-1)UV-B辐射并结合药理学实验和激光共聚焦显微技术,对ML7113小麦的叶片及表皮条进行不同的处理,结果显示:(1)UV-B辐射既可诱导小麦叶片气孔关闭,又能够明显增加气孔保卫细胞和叶片的NO水平,且NO清除剂明显抑制了UV-B辐射诱导的小麦叶片气孔关闭,同时气孔保卫细胞和叶片内的NO含量明显减少。(2)一氧化氮合酶(NOS)抑制剂L-NAME对经UV-B辐射诱导的小麦幼苗气孔开度及保卫细胞和叶片内NO含量的抑制程度明显大于硝酸还原酶(NR)抑制剂NaN3对其的抑制程度,说明一氧化氮合酶(NOS)合成途径是小麦叶片经UV-B辐射后NO的主要产生途径。(3)就气孔开度而言,L〉CK〉BL〉B。就小麦叶片及保卫细胞内NO含量而言,B〉BL〉CK〉L。就硝酸还原酶(NR)和一氧化氮合酶(NOS)的活性而言,B组NR活性最低,NOS活性最高,L组NR活性最高,NOS活性最低。表明经He-Ne激光和增强UV-B辐射诱导的小麦气孔开度的变化确实与保卫细胞及叶片中NO含量的多少有关,气孔开度的减小及增大对应于NO含量的增多或减少,同时进一步证实了小麦叶片经He-Ne激光单独辐照后,NO的主要合成途径也来源于NOS途径。  相似文献   

5.
范光年  王培 《植物学通报》1993,10(1):57-57,56
植物叶表皮的气孔是蒸发植物体内水分的主通道,而小麦叶片气孔则是由两个哑铃状的保卫细胞组成,这种保卫细胞的长度分布具有一定的稳定性和规律性。为了摸清保卫细胞长度在小麦旗叶上的分布规律,以便进一步研究小麦旗叶的水分生理,1989年我们采用叶片保卫细胞长度观测法,对14个小麦基因型4200个旗叶保卫细胞进行了长度测量,现将测量结果报告如下:  相似文献   

6.
一种用透明胶带粘取叶片表皮观察气孔的方法   总被引:30,自引:2,他引:28  
用普通塑料透明胶带粘取叶片下表皮观察植物的气孔,比印迹法和撕取下表皮观察气孔的方法具有操作简单、速度快、真实性强的优点,尤其适宜于试管苗等幼嫩材料的气孔变化动态和形态学指标的研究.此法可以防止因保卫细胞失水而导致气孔开张度的变化,能真实地观察植物不同阶段和时期气孔的变化动态.  相似文献   

7.
聚乙二醇对平邑甜茶叶片气孔器超微结构的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
 采用透射电镜技术对聚乙二醇(PEG)模拟干旱处理的平邑甜茶(Malus hupehensis Rehd (pingyitiancha))叶片气孔器超微结构进行了观察,并对叶片气孔器超微结构制片方法进行了改进。所观察结果如下:1)PEG胁迫后保卫细胞中叶绿体数量增加,而叶绿体中淀粉粒数量呈下降趋势;2)PEG胁迫降低保卫细胞中线粒体的数量及破坏线粒体的超微结构;3)PEG胁迫使平邑甜茶保卫细胞中的液泡变小以致不明显。  相似文献   

8.
通过激光扫描共聚焦显微镜,利用不同种类(波长)的激光研究拟南芥叶片气孔发生与发育。结果表明,利用紫外激光(351nm)扫描可以清楚观察到拟南芥表皮各种细胞及其发生发育的形态变化,包括表皮毛细胞、副卫细胞、保卫细胞、铺垫表皮细胞等。气孔发生过程中,首先原表皮细胞不对称分裂产生拟分生组织和副卫细胞,接着分化出保卫细胞母细胞,进一步发育形成保卫细胞,最终形成气孔器。气孔分化完成后,保卫细胞在紫外激光下不产生荧光,但利用蓝光激发(488nm)辅助荧光素染色,可清晰地看到保卫细胞。结果表明,激光扫描共聚焦显微镜在拟南芥叶表皮细胞形态研究上有独特的功能。  相似文献   

9.
蚌兰(见图)别名紫鸭跖草、红叶鸭跖草、紫背万年青,鸭跖草科,多年生草本,源于西印度群岛,这种植物的叶片一面为深绿色,另一面为红紫色。它的花每一对共同包于两枚“蚌殻”形的苞叶内,花为白色或淡紫色,开花时蚌殻微开,吐露出小花,相当可爱。实践发现,蚌兰是一种很适合观察植物气孔的实验材料:保卫细胞体积大,气孔开闭明显。在载玻片上滴一滴清水,撕取一小块叶片上表皮制成装片,可观察到气孔是开着的,从盖玻片的一侧滴一滴甘油,另一侧用吸水纸反复吸引,因保卫细胞失水,可观察到气孔逐渐关闭。蚌兰也是探究植物细胞的吸水和失水的好材料:无季…  相似文献   

10.
禾本科植物叶片表皮气孔观察的样品制备方法改良   总被引:1,自引:0,他引:1  
对现有的禾本科植物叶片气孔观察的样品制作方法中的不足作了一些改良。改良后的方法操作简便、耗时少、样品制备成功率高,且放大后的效果好,不会造成气孔形态的改变。改良方法适用于禾本科植物和其他叶肉紧实不易剥离的植物叶片。50%NaClO处理3min最适用于小麦旗叶表皮样品的制备。  相似文献   

11.
Aceto-Iron-Haematoxylin-Chloral Hydrate for Chromosome Staining   总被引:3,自引:0,他引:3  
Aceto-iron-haematoxylin can be used combined with the clearing agent chloral hydrate for the squash method. The stain is prepared by dissolving 2 gm of chloral hydrate in 5 ml of a stock solution of 4% haematoxylin and 1% iron alum in 45% acetic acid, which has been allowed to ripen for 24 hr to 1 wk. Heat must not be used to hasten solution. The material (fixed in 1:3 acetic-alcohol) is put on a slide, the fixative removed and a drop of stain added; if necessary the material is crushed before the cover slip is placed in position. The preparations are now carefully heated until a slight colour change occurs. Squashing needs more pressure than in other techniques. This stain gives best results in zoological and botanical material not requiring hydrolysis, e.g., leucocytes, ascites cells, and cells undergoing spermatogenesis and microsporogenesis. Well-spread and selectively stained mitotic and meiotic figures can be obtained.  相似文献   

12.
A technique which should be generally applicable for preparing permanent mounts of tissue cleared in Herr's four-and-a-half clearing fluid is described. This technique involves transferring plant or animal tissues through a series of solutions consisting of Pienarr's fixative, Herr's clearing fluid, chloral hydrate, acetone and finally polyester resin for mounting. Material prepared using this method is exceptionally transparent and well preserved, and is suitable for either phase contrast or Nomarski interference microscopy.  相似文献   

13.

Background and Aims

In seed plants, the ability of guard cell walls to move is imparted by pectins. Arabinan rhamnogalacturonan I (RG1) pectins confer flexibility while unesterified homogalacturonan (HG) pectins impart rigidity. Recognized as the first extant plants with stomata, mosses are key to understanding guard cell function and evolution. Moss stomata open and close for only a short period during capsule expansion. This study examines the ultrastructure and pectin composition of guard cell walls during development in Funaria hygrometrica and relates these features to the limited movement of stomata.

Methods

Developing stomata were examined and immunogold-labelled in transmission electron microscopy using monoclonal antibodies to five pectin epitopes: LM19 (unesterified HG), LM20 (esterified HG), LM5 (galactan RG1), LM6 (arabinan RG1) and LM13 (linear arabinan RG1). Labels for pectin type were quantitated and compared across walls and stages on replicated, independent samples.

Key Results

Walls were four times thinner before pore formation than in mature stomata. When stomata opened and closed, guard cell walls were thin and pectinaceous before the striated internal and thickest layer was deposited. Unesterified HG localized strongly in early layers but weakly in the thick internal layer. Labelling was weak for esterified HG, absent for galactan RG1 and strong for arabinan RG1. Linear arabinan RG1 is the only pectin that exclusively labelled guard cell walls. Pectin content decreased but the proportion of HG to arabinans changed only slightly.

Conclusions

This is the first study to demonstrate changes in pectin composition during stomatal development in any plant. Movement of Funaria stomata coincides with capsule expansion before layering of guard cell walls is complete. Changes in wall architecture coupled with a decrease in total pectin may be responsible for the inability of mature stomata to move. Specialization of guard cells in mosses involves the addition of linear arabinans.  相似文献   

14.
A technique which should be generally applicable for preparing permanent mounts of tissue cleared in Herr's four-and-a-half clearing fluid is described. This technique involves transferring plant or animal tissues through a series of solutions consisting of Pienarr's fixative, Herr's clearing fluid, chloral hydrate, acetone and finally polyester resin for mounting. Material prepared using this method is exceptionally transparent and well preserved, and is suitable for either phase contrast or Nomarski interference microscopy.  相似文献   

15.
Gao XQ  Chen J  Wei PC  Ren F  Chen J  Wang XC 《Plant cell reports》2008,27(10):1655-1665
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement.  相似文献   

16.
Anomocytic stomata and stomata with single subsidiary cells are commonly observed Sometimes a stoma appears anisocytic. Double cytoplasmic connections between nearby stomata and division of guard cells with persistent or degenerating nuclei are seen in GA. One or more divisions of guard cells, displaced guard cells and single guard cells with or without pore are noticed in SUC. Formation of single guard cells is a common feature in TIBA. Paracytic stomata, one and a half stomata and persistent stomatal initials are seen in SUL. COUM seems to be not inhibitory inCucumis sativus. In COL stomata with unequal guard cells, unequal stomatal cells with thickening in between but without intervening pore, stoma with double pores, persistent stomatal initials which may be solitary or in groups with varying shapes and with one or two nuclei of different shapes are noticed. The growth regulators affect the frequency of stomata, epidermal cells; stomatal index; size of guard and epidermal cells.  相似文献   

17.
The development and structure of stomata on the succulent leaves of six species ofSenecio are reported. It was found that in all the species investigated the development of stomata was of the mesogenous type and the structure of the stomata was anisocytic. The constancy in the development and structure of stomata in all the species of the genus investigated agrees with the view that a stomatal type and its developmental modes are constant at the genus level. Abnormalities such as contiguous stomata, degenerated guard cells, abortive and single guard cells are also recorded as natural phenomena.  相似文献   

18.
Leek, maize, and pigmented soybean roots colonized by vesicular-arbuscular mycorrhizal (VAM) fungi were assessed for succinate dehydrogenase (SDH) activity using the nitro blue tetrazolium chloride (NBT)-succinate method. NBT-succinate-reacted roots, cleared in a 55° C drying oven in 5% (w/v) KOH for 24 h or longer and observed as whole mounts, revealed signs of intraradical VAM fungus colonization more clearly than roots cleared by the standard 20% (w/v) boiling chloral hydrate method. Combined clearing of NBT-succinate-reacted roots using boiling chloral hydrate followed by clearing in 5% KOH at 55° C for prolonged periods also improved the visualization of intraradical fungal structures. Bleaching of NBT-succinate-reacted roots using the standard NH3-H2O2 method removed pigmentation from roots and did not alter the viability indicator, formazan. Pigmented, field-collected soybean roots were successfully cleared and bleached to reveal signs of viable and nonviable intraradical fungal structures. Counterstaining of NBT-succinate-reacted roots with acid fuchsin clearly revealed both viable and nonviable intraradical fungal structures. The NBT-succinate solution infiltrated all intraradical fungal structures after 24 h; formazan products were observed at similar concentrations in viable structures after 24, 36, and 48 h.  相似文献   

19.
Stomata, composed of two guard cells, are the gates whose controlled movement allows the plant to balance the demand for CO2 for photosynthesis with the loss of water through transpiration. Increased guard‐cell osmolarity leads to the opening of the stomata and decreased osmolarity causes the stomata to close. The role of sugars in the regulation of stomata is not yet clear. In this study, we examined the role of hexokinase (HXK), a sugar‐phosphorylating enzyme involved in sugar‐sensing, in guard cells and its effect on stomatal aperture. We show here that increased expression of HXK in guard cells accelerates stomatal closure. We further show that this closure is induced by sugar and is mediated by abscisic acid. These findings support the existence of a feedback‐inhibition mechanism that is mediated by a product of photosynthesis, namely sucrose. When the rate of sucrose production exceeds the rate at which sucrose is loaded into the phloem, the surplus sucrose is carried toward the stomata by the transpiration stream and stimulates stomatal closure via HXK, thereby preventing the loss of precious water.  相似文献   

20.
Acetylcholinesterase, an enzyme responsible for hydrolyzing of acetylcholine to choline and acetic acid residues, is detected in the guard cell protoplasts. Extensive acetylcholinesterase activity has been found in the guard cell protoplasts as compared with the mesophyll cell protoplasts. Moreover, light could stimulate the enzyme activity. Localization of acetylcholinesterase in the stomata of Vicia faba L. was undertaken using Karnovsky and Roots cytochemical method. It was found that in the stomata of this plant products of acetylcholinesterase enzymatic reaction mainly appeared in the outer side of the guard cell ventral wall and inner wall. When the staining time was prolonged, products of acetylcholinesterase enzymatic reaction could also be found in the ventral and inner wall of the guard cells. In addition, more extensive product of enzymatic reaction was observed in the opened stomata than in the closed stomata. It was assumed that acetylcholineaterase may participate in the regulation of stomatal movement by hydrolyzing acetylcholine around the stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号