首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
2.
Methamphetamine (METH) is a neurotoxic drug of abuse that can cause terminal degeneration. Our laboratory recently showed that METH can also cause widespread apoptosis in the rodent brain. Current concepts of the molecular neurotoxicity of this illicit substance have earlier suggested the participation of reactive oxygen species, inflammatory processes and immediate early genes. Recent cDNA studies in our laboratory have hinted to the possibility that METH‐induced neurodegeneration might also include the participation of cell death might also include the participation of cell death genes such as BAX and BCL‐2. Activation of multiple caspases appears to also occur during METH‐induced neurodegeneration. Furthermore, DNA repair pathways seem to also be involved in attempts to protect against METH‐induced DNA damage. These results will be discussed in terms of the possible involvement of multiple transduction mechanisms in the appearance of METH neurotoxicity.  相似文献   

3.
Methamphetamine (METH) is a neurotoxic drug of abuse that can cause terminal degeneration. Our laboratory recently showed that METH can also cause widespread apoptosis in the rodent brain. Current concepts of the molecular neurotoxicity of this illicit substance have earlier suggested the participation of reactive oxygen species, inflammatory processes and immediate early genes. Recent cDNA studies in our laboratory have hinted to the possibility that METH-induced neurodegeneration might also include the participation of cell death might also include the participation of cell death genes such as BAX and BCL-2. Activation of multiple caspases appears to also occur during METH-induced neurodegeneration. Furthermore, DNA repair pathways seem to also be involved in attempts to protect against METH-induced DNA damage. These results will be discussed in terms of the possible involvement of multiple transduction mechanisms in the appearance of METH neurotoxicity.  相似文献   

4.
5.
The process of programmed cell death is frequently attenuatedby inhibitors of protein and RNA synthesis. This implies thatgene expression is necessary for the active elimination of somecell types. Genes such as bcl-2 and bax have been implicatedin the direct control of cell death, while cellular immediate-earlygenes (clEGs), such as c-fos and c-jun have been repeatedlyassociated with neuronal degeneration. We are using the olfactoryneuroepithelium as a model system to investigate the role thatexpression of such genes might play in cell death. The advantagesof this system is that even in the adult, there is spontaneousdegeneration of olfactory receptor neurons followed by theirreplacement by the division and differentiation of precursors.Futhermore, the receptor neurons can be induced to die synchronouslyby removal of the olfactory bulb or intranasal administrationof toxic agents. We have generated fos-lacZ and jun-lacZ transgenicmice that can be used to assess expression of c-fos and c-junfollowing these various manipulations. In addition, a line oftransgenic mice has been derived that express Bcl-2 under thecontrol of the olfactory receptor protein promoter. These micehave high levels of Bcl-2 selectively in receptor neurons ofthe primary neuro-epithelium and vomeronasal organ. Since insome circumstances, Bcl-2 can protect against programmed celldeath these mice are being assessed for neuronal turnover underbasal conditions and following olfactory bulbectomy.  相似文献   

6.
Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.  相似文献   

7.
8.
苯丙胺类兴奋剂是全世界第二大滥用程度的药物,甲基苯丙胺作为苯胺类兴奋剂中的主要药物,是中国滥用的“头号毒品”。而现有的研究对甲基苯丙胺成瘾机制尚不清晰,且临床上对药物成瘾的治疗依然存在无药可医的局面。因此,发现新的成瘾机制和治疗策略尤为迫切。甲基苯丙胺成瘾与额前叶皮质(mPFC)、中脑腹侧被盖区(VTA)和伏隔核(NAc)中的多巴胺(DA)、谷氨酸(Glu)、去甲肾上腺素(NE)和血清素(SNRIS)等神经递质的异常释放有关。研究表明,这些神经递质受到表观遗传机制中组蛋白乙酰化、甲基化、泛素化和非编码RNA等调节,某些基因的表达在甲基苯丙胺的诱导过程中增强或被抑制,导致甲基苯丙胺依赖性产生。本文将针对表观遗传学对甲基苯丙胺成瘾机制的影响进行着重论述,以期推进临床开发甲基苯丙胺戒断药物的研究。  相似文献   

9.
10.
Xu T  Wang X  Cao M  Wu X  Yan Y  Fu H  Zhao W  Gong P  Ke K  Gu X 《Journal of molecular histology》2012,43(3):335-342
BAG-1 protein was initially identified as a Bcl-2-binding protein. It was reported to enhance Bcl-2 protection from cell death, suggesting that BAG-1 represents a new type of anti-cell death gene. Moreover, recent study has shown that BAG-1 can enhance the proliferation of neuronal precursor cells, attenuate the growth inhibition induced by siah1. However, its function and expression in the central nervous system lesion are not been understood very well. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes of BAG-1 expression in the brain cortex. Double immunofluorescence staining revealed that BAG-1 was co-expressed with NEURON and glial fibrillary acidic protein (GFAP). In addition, we detected that proliferating cell nuclear antigen had the co-localization with GFAP, and BAG-1. All our findings suggested that BAG-1 might involve in the pathophysiology of brain after TBI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号