首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many stochastic systems, including biological applications, use Markov chains in which there is a set of absorbing states. It is then needed to consider analogs of the stationary distribution of an irreducible chain. In this context, quasi-stationary distributions play a fundamental role to describe the long-term behavior of the system. The rationale for using quasi-stationary distribution is well established in the abundant existing literature. The aim of this study is to reformulate the ratio of means approach ( [Darroch and Seneta, 1965] and [Darroch and Seneta, 1967]) which provides a simple alternative. We have a two-fold objective. The first objective is viewing quasi-stationarity and ratio of expectations as two different approaches for understanding the dynamics of the system before absorption. At this point, we remark that the quasi-stationary distribution and a ratio of means distribution may give or not give similar information. In this way, we arrive to the second objective; namely, to investigate the possibility of using the ratio of expectations distribution as an approximation to the quasi-stationary distribution. This second objective is explored by comparing both distributions in some selected scenarios, which are mainly inspired in stochastic epidemic models. Previously, the rate of convergence to the quasi-stationary regime is taking into account in order to make meaningful the comparison.  相似文献   

3.
In this study, we evaluated computational efficiency of finite element (FE) simulations when a numerical approximation method was used to obtain the tangent moduli. A fiber-reinforced hyperelastic material model for nearly incompressible soft tissues was implemented for 3D solid elements using both the approximation method and the closed-form analytical method, and validated by comparing the components of the tangent modulus tensor (also referred to as the material Jacobian) between the two methods. The computational efficiency of the approximation method was evaluated with different perturbation parameters and approximation schemes, and quantified by the number of iteration steps and CPU time required to complete these simulations. From the simulation results, it can be seen that the overall accuracy of the approximation method is improved by adopting the central difference approximation scheme compared to the forward Euler approximation scheme. For small-scale simulations with about 10,000 DOFs, the approximation schemes could reduce the CPU time substantially compared to the closed-form solution, due to the fact that fewer calculation steps are needed at each integration point. However, for a large-scale simulation with about 300,000 DOFs, the advantages of the approximation schemes diminish because the factorization of the stiffness matrix will dominate the solution time. Overall, as it is material model independent, the approximation method simplifies the FE implementation of a complex constitutive model with comparable accuracy and computational efficiency to the closed-form solution, which makes it attractive in FE simulations with complex material models.  相似文献   

4.
Continuum limits in the form of stochastic differential equations are typically used in theoretical population genetics to account for genetic drift or more generally, inherent randomness of the model. In evolutionary game theory and theoretical ecology, however, this method is used less frequently to study demographic stochasticity. Here, we review the use of continuum limits in ecology and evolution. Starting with an individual‐based model, we derive a large population size limit, a (stochastic) differential equation which is called continuum limit. By example of the Wright–Fisher diffusion, we outline how to compute the stationary distribution, the fixation probability of a certain type, and the mean extinction time using the continuum limit. In the context of the logistic growth equation, we approximate the quasi‐stationary distribution in a finite population.  相似文献   

5.
6.
Moment closure approximations are used to provide analytic approximations to non-linear stochastic population models. They often provide insights into model behaviour and help validate simulation results. However, existing closure schemes typically fail in situations where the population distribution is highly skewed or extinctions occur. In this study we address these problems by introducing novel second-and third-order moment closure approximations which we apply to the stochastic SI and SIS epidemic models. In the case of the SI model, which has a highly skewed distribution of infection, we develop a second-order approximation based on the beta-binomial distribution. In addition, a closure approximation based on mixture distribution is developed in order to capture the behaviour of the stochastic SIS model around the threshold between persistence and extinction. This mixture approximation comprises a probability distribution designed to capture the quasi-equilibrium probabilities of the system and a probability mass at 0 which represents the probability of extinction. Two third-order versions of this mixture approximation are considered in which the log-normal and the beta-binomial are used to model the quasi-equilibrium distribution. Comparison with simulation results shows: (1) the beta-binomial approximation is flexible in shape and matches the skewness predicted by simulation as shown by the stochastic SI model and (2) mixture approximations are able to predict transient and extinction behaviour as shown by the stochastic SIS model, in marked contrast with existing approaches. We also apply our mixture approximation to approximate a likehood function and carry out point and interval parameter estimation.  相似文献   

7.
To obtain the open or closed time interval distributions of patch clamp signals, several workers have used a half-amplitude minimum time interval criterion. Within this framework, no transition between states of different conductance levels is considered to have taken place if it leads to a time interval smaller than a certain critical value. This procedure modifies substantially the open or closed time interval distribution of the random signal to be analyzed, since time intervals well above the time resolution of the recording system may be interrupted by short gaps that may or may not satisfy the minimum time interval criterion. We present here a general theoretical framework by means of which the effect of time interval omission on time interval distributions can be taken into account. Based on the mathematical formalism provided by the Kolmogorov forward equation, special matrix operators are first defined. The general solution to the time omission problem in its integral form is then derived. In view of the poor computational feasibility of the resulting solution, a first-order approximation is also presented. This approximation consists essentially in neglecting the contribution of the undetected gaps to the total length of the resulting time interval. The exact and approximate solutions are then applied to two special kinetic schemes commonly found in single-channel studies, namely the O-C and C-O-C models. The applicability of the proposed formalism to the time interval distribution problem of a damped random signal is finally discussed.  相似文献   

8.
Many biologists use population models that are spatial, stochastic and individual based. Analytical methods that describe the behaviour of these models approximately are attracting increasing interest as an alternative to expensive computer simulation. The methods can be employed for both prediction and fitting models to data. Recent work has extended existing (mean field) methods with the aim of accounting for the development of spatial correlations. A common feature is the use of closure approximations for truncating the set of evolution equations for summary statistics. We investigate an analytical approach for spatial and stochastic models where individuals interact according to a generic function of their distance; this extends previous methods for lattice models with interactions between close neighbours, such as the pair approximation. Our study also complements work by Bolker and Pacala (BP) [Theor. Pop. Biol. 52 (1997) 179; Am. Naturalist 153 (1999) 575]: it treats individuals as being spatially discrete (defined on a lattice) rather than as a continuous mass distribution; it tests the accuracy of different closure approximations over parameter space, including the additive moment closure (MC) used by BP and the Kirkwood approximation. The study is done in the context of an susceptible-infected-susceptible epidemic model with primary infection and with secondary infection represented by power-law interactions. MC is numerically unstable or inaccurate in parameter regions with low primary infection (or density-independent birth rates). A modified Kirkwood approximation gives stable and generally accurate transient and long-term solutions; we argue it can be applied to lattice and to continuous-space models as a substitute for MC. We derive a generalisation of the basic reproduction ratio, R(0), for spatial models.  相似文献   

9.
In order to understand the development of non-genetically encoded actions during an animal’s lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer–scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.  相似文献   

10.
We study the SIS and SIRI epidemic models discussing different approaches to compute the thresholds that determine the appearance of an epidemic disease. The stochastic SIS model is a well known mathematical model, studied in several contexts. Here, we present recursively derivations of the dynamic equations for all the moments and we derive the stationary states of the state variables using the moment closure method. We observe that the steady states give a good approximation of the quasi-stationary states of the SIS model. We present the relation between the SIS stochastic model and the contact process introducing creation and annihilation operators. For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we present the phase transition lines using the mean field and the pair approximation for the moments. We use a scaling argument that allow us to determine analytically an explicit formula for the phase transition lines in pair approximation.  相似文献   

11.
We propose the use of a stationary probability distribution for the analysis of data on population size. Predicting this long term population property from short term individual events is accomplished by the use of the asymptotic theory of stochastic processes. A WKB approximation to the stationary density is obtained and then applied to observations on the flour beetleTribolium.  相似文献   

12.
The performance of the extended Bush-Mosteller learning and imprinting scheme developed previously is studied for stationary and non-stationary stochastic environments. As a performance criterion the average missing information level is chosen. For a stationary environment the approximate time course of the latter is derived and discussed, an exact symmetry in the performance of learning and imprinting schemes is proved, and the biological advantage of imprinting processes, with respect to energy consumption, is pointed out. For a non-stationary environment the performance of proper learning schemes is shown to be superior to imprinting processes, as the adaptability of the latter to novel environmental properties decreases exponentially in time. The optimal memory range of a learning system is calculated as a function of the time span during which the environment changes significantly and of the mean amplitude with which these changes occur.Supported by the Deutsche Forschungsgemeinschaft and the Humboldt Foundation.Fellow of the Humboldt Foundation; on leave of absence from the University of Poona, India.  相似文献   

13.
14.
Orio P  Soudry D 《PloS one》2012,7(5):e36670
BACKGROUND: The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. MAIN CONTRIBUTIONS: We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable--allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used.  相似文献   

15.
We introduce an implicit method for state and parameter estimation and apply it to a stochastic ecological model. The method uses an ensemble of particles to approximate the distribution of model solutions and parameters conditioned on noisy observations of the state. For each particle, it first determines likely values based on the observations, then samples around those values. This approach has a strong theoretical foundation, applies to nonlinear models and non-Gaussian distributions, and can estimate any number of model parameters, initial conditions, and model error covariances. The method is called implicit because it updates the particles without forming a predictive distribution of forward model integrations. As a point of comparison for different assimilation techniques, we consider examples in which one or more bifurcations separate the true parameter from its initial approximation. The implicit estimator is asymptotically unbiased, has a root-mean-squared error comparable to or less than the other methods, and is accurate even with small ensemble sizes.  相似文献   

16.
Like predation and competition, mutualism is recognized as a consumer-resource interaction, which includes bi-directional and uni-directional mutualisms. In this paper, we firstly propose a stochastic uni-directional consumer-resource system of two species in which the consumer has both positive and negative effects on the resource, while the resource has only a positive effect on the consumer. We then mathematically analyze the system, to demonstrate the existence, uniqueness, asymptotic pathwise behavior and stochastically ultimately boundedness of the global positive solution, and to establish sufficient conditions for the global attractivity and the existence of ergodic stationary distribution of the system. We also establish sufficient conditions for the extinction and persistence in mean of the resource, the consumer or the entire system. Numerical simulations are carried out to demonstrate the analytical results.  相似文献   

17.
Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.  相似文献   

18.
Summary Growth curve data consist of repeated measurements of a continuous growth process over time in a population of individuals. These data are classically analyzed by nonlinear mixed models. However, the standard growth functions used in this context prescribe monotone increasing growth and can fail to model unexpected changes in growth rates. We propose to model these variations using stochastic differential equations (SDEs) that are deduced from the standard deterministic growth function by adding random variations to the growth dynamics. A Bayesian inference of the parameters of these SDE mixed models is developed. In the case when the SDE has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional distribution of the diffusion process has no explicit form, we propose to approximate it using the Euler–Maruyama scheme. Finally, we suggest validating the SDE approach via criteria based on the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz function to model data on chicken growth, the modeling being improved by the SDE approach.  相似文献   

19.
In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.  相似文献   

20.
MOTIVATION: Biochemical signaling pathways and genetic circuits often involve very small numbers of key signaling molecules. Computationally expensive stochastic methods are necessary to simulate such chemical situations. Single-molecule chemical events often co-exist with much larger numbers of signaling molecules where mass-action kinetics is a reasonable approximation. Here, we describe an adaptive stochastic method that dynamically chooses between deterministic and stochastic calculations depending on molecular count and propensity of forward reactions. The method is fixed timestep and has first order accuracy. We compare the efficiency of this method with exact stochastic methods. RESULTS: We have implemented an adaptive stochastic-deterministic approximate simulation method for chemical kinetics. With an error margin of 5%, the method solves typical biologically constrained reaction schemes more rapidly than exact stochastic methods for reaction volumes >1-10 micro m(3). We have developed a test suite of reaction cases to test the accuracy of mixed simulation methods. AVAILABILITY: Simulation software used in the paper is freely available from http://www.ncbs.res.in/kinetikit/download.html  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号