首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Summary Odontodactylus scyllarus makes discrete spontaneous eye-movements at a maximum rate of 3/s. These movements are unpredictable in direction and timing, and there is no detectable co-ordination between the two eyes. The eye-movements were measured with a computer-aided video method, and from 208 of these the following picture of a typical movement emerges. It has roughly equal horizontal and vertical components of 7–8°, taking the eye-stalk axis about 12° around a great circle, and also a rotational component of about 8°. The 3 components can occur independently of each other and are thus separately driven by the brain (Fig. 6). The average duration is 300 ms, and average velocity is 40° s (Fig. 5). Most movements are made in a direction approximately at right angles to the orientation of the specialised central band. It is shown that the slow speed of the eye-movements is compatible with scanning, that is, the uptake of visual information during the movement rather than its exclusion as in conventional saccades.Mantis shrimps also make target-acquiring and tracking eye-movements which tend to be somewhat larger and faster than other spontaneous movements. Rotating a striped drum around the animal induces a typical optokinetic nystagmus whose slow phases are smooth, unlike target tracking which is jerky (Fig. 7). Eye-movements may therefore be conveniently grouped into 3 classes: targetting/tracking, scanning, and optokinetic.  相似文献   

2.
1. Voluntary saccadic eye movements were made toward flashes of light on the horizontal meridian, whose duration and distance from the point of fixation were varied; eye movements were measured using d.c.-electrooculography.—2. Targets within 10°–15° eccentricity are usually reached by one saccadic eye movement. When the eyes turn toward targets of more than 10°–15° eccentricity, the first saccadic eye movement falls short of the target by an angle usually not exceeding 10°. The presence of the image of the target off the fovea (visual error signal) subsequent to such an undershoot elicits, after a short interval, corrective saccades (usually one) which place the image of the target on the fovea. In the absence of a visual error signal, the probability of occurrence of corrective saccades is low, but it increases with greater target eccentricities. These observations suggest that there are different, eccentricity-dependent modes of programming saccadic eye movements.—3. Saccadic eye movements appear to be programmed in retinal coordinates. This conclusion is based on the observations that, irrespective of the initial position of the eyes in the orbit, a) there are different programming modes for eye movements to targets within and beyond 10°–15° from the fixation point, and b_ the maximum velocity of saccadic eye movements is always reached at 25° to 30° target eccentricity. —4. Distributions of latency and intersaccadic interval (ISI) are frequently multimodal, with a separation between modes of 30 to 40 msec. These observations suggest that saccadic eye movements are produced by mechanisms which, at a frequency of 30 Hz, process visual information. —5. Corrective saccades may occur after extremely short intervals (30 to 60 msec) regardless of whether or not a visual error signal is present; the eyes may not even come to a complete stop during these very short intersaccadic intervals. It is suggested that these corrective saccades are triggered by errors in the programming of the initial saccadic eye movements, and not by a visual error signal. —6. The exitence of different, eccentricity-dependent programming modes of saccadic eye movements, is further supported by anatomical, physiological, psychophysical, and neuropathological observations that suggest a dissociation of visual functions dependent on retinal eccentricity. Saccadic eye movements to targets more eccentric than 10°–15° appear to be executed by a mechanism involving the superior colliculus (perhaps independent of the visual cortex), whereas saccadic eye movements to less eccentric targets appear to depend on a mechanism involving the geniculo-cortical pathway (perhaps in collaboration with the superior colliculus).  相似文献   

3.
Visual information processing is adapted to the statistics of natural visual stimuli, and these statistics depend to a large extent on the movements of an animal itself. To investigate such movements in freely walking blowflies, we measured the orientation and position of their head and thorax, with high spatial and temporal accuracy. Experiments were performed on Calliphora vicina, Lucilia cuprina and L. caesar. We found that thorax and head orientation of walking flies is typically different from the direction of walking, with differences of 45° common. During walking, the head and the thorax turn abruptly, with a frequency of 5–10 Hz and angular velocities in the order of 1,000°/s. These saccades are stereotyped: head and thorax start simultaneously, with the head turning faster, and finishing its turn before the thorax. The changes in position during walking are saccade-like as well, occurring synchronously, but on average slightly after the orientation saccades. Between orientation saccades the angular velocities are low and the head is held more stable than the thorax. We argue that the strategy of turning by saccades improves the performance of the visual system of blowflies.  相似文献   

4.
The goal of this study was to test whether a superposition model of smooth-pursuit and vestibulo-ocular reflex (VOR) eye movements could account for the stability of gaze that subjects show as they view a stationary target, during head rotations at frequencies that correspond to natural movements. Horizontal smooth-pursuit and the VOR were tested using sinusoidal stimuli with frequencies in the range 1.0–3.5 Hz. During head rotation, subjects viewed a stationary target either directly or through an optical device that required eye movements to be approximately twice the amplitude of head movements in order to maintain foveal vision of the target. The gain of compensatory eye movements during viewing through the optical device was generally greater than during direct viewing or during attempted fixation of the remembered target location in darkness. This suggests that visual factors influence the response, even at high frequencies of head rotation. During viewing through the optical device, the gain of compensatory eye movements declined as a function of the frequency of head rotation (P < 0.001) but, at any particular frequency, there was no correlation with peak head velocity (P > 0.23), peak head acceleration (P > 0.22) or retinal slip speed (P > 0.22). The optimal values of parameters of smooth-pursuit and VOR components of a simple superposition model were estimated in the frequency domain, using the measured responses during head rotation, as each subject viewed the stationary target through the optical device. We then compared the model's prediction of smooth-pursuit gain and phase, at each frequency, with values obtained experimentally. Each subject's pursuit showed lower gain and greater phase lag than the model predicted. Smooth-pursuit performance did not improve significantly if the moving target was a 10 deg × 10 deg Amsler grid, or if sinusoidal oscillation of the target was superimposed on ramp motion. Further, subjects were still able to modulate the gain of compensatory eye movements during pseudo-random head perturbations, making improved predictor performance during visual-vestibular interactions unlikely. We conclude that the increase in gain of eye movements that compensate for head rotations when subjects view, rather than imagine, a stationary target cannot be adequately explained by superposition of VOR and smooth-pursuit signals. Instead, vision may affect VOR performance by determining the context of the behavior. Received: 16 June 1997 / Accepted: 5 December 1997  相似文献   

5.
When a walking fly approaches a stationary object two types of body movements are distinguishable. Type I body movements are characterized by low frequencies (0.4–1.3 Hz) and large amplitudes (28–65°). Superimposed on these movements are type II body movements which are characterized by high frequencies (7.3–10.6 Hz) and small amplitudes (5.9–8.2°) (Figs. 3–6; Table 1). Type II movements occur no matter whether the fly is fixating a pattern or orientating itself in homogeneous surroundings without any pattern. In contrast, only 72% of the flies with immobilized heads and 62% of the flies with movable heads make type I body movements. The amplitude of type I and type II body movements increases slightly after immobilization of the head. Binocular as well as monocular pattern projection occurs for the whole walking trajectory (Fig. 7–9). Monocular pattern projection seems to be more frequent in flies with immobilized heads than in those with movable heads. The degree of pattern fluctuations in the visual field of the flies increases slightly along the walking trajectory. Near the starting point in the centre of the arena it amounts to 5–7°, while at the end of the walking trajectory it amounts to 8–10° (Table 2). The following conclusions and hypothesis can be drawn from these experiments. 1. The graph BT for the direction of the fly's logitudinal axis can be approximated by the first derivative of the walking trajectory WT, that means, dWT(x)/dxBT(x) (Fig. 11). 2. The amplitudes of type II body movements are caused by the alternating movements of the legs during forward motion, while type I body movements are classified as exploring movements. During evolution of visually guided behaviour it is possible that blowflies have adapted their elementary movement detector system to type II body movements. 3. The types of pattern projection into the visual field of the fly while approaching an object can be explained by a simple neuronal network characterized by either inhibitory and/or excitatory influences of the visually activated neurones on the motor neurones generating the propulsive forces, that means the forward motion. In addition it is postulated that the large frontal and antero-lateral receptive fields of these neurones are not coupled with the motor centres on the same side of the body (Fig. 12).  相似文献   

6.
ABSTRACT

Stomatopod crustaceans have highly mobile, independently moving compound eyes that are sensitive to both linearly and circularly polarized light. They rotate their eyes to predictable angles when viewing a linearly polarized target, and they scan their eyes frequently to sample the visual field. Angles of scans are roughly perpendicular to the plane of the midband (a set of specialized parallel rows of equatorial ommatidia). We investigated scanning eye movements in one Caribbean stomatopod species (Neogonodactylus oerstedii) in uniform visual fields that were vertically polarized, horizontally polarized, or depolarized. We found that mean eye rotation and scan angles differed significantly among these different treatments. Average scan angles differed by 12°, being more horizontal in a vertically polarized field than in a horizontally polarized one, and also more horizontal in a vertically polarized field than in a depolarized field. Thus, these stomatopods adjusted visual scanning to the polarization of the visual environment.  相似文献   

7.
Larvae of the predaceous diving beetle Thermonectus marmoratus bear six stemmata on each side of their head, two of which form relatively long tubes with linear retinas at their proximal ends. The physical organization of these eyes results in extremely narrow visual fields that extend only laterally in the horizontal body plane. There are other examples of animals possessing eyes with predominantly linear retinas, or with linear arrangements of specific receptor types. In these animals, the eyes, or parts of the eyes, are movable and perform scanning movements to increase the visual field. Based on anatomical data and observations of relatively transparent, immobilized young larvae, we report here that T. marmoratus larvae are incapable of moving their eyes or any part of their eyes within the head capsule. However, they do perform a series of bodily dorso-ventral pivots prior to prey capture, behaviorally extending the vertical visual field from 2° to up to 50°. Frame-by-frame analysis shows that such behavior is performed within a characteristic distance to the prey. These data provide first insights into the function of the very peculiar anatomical eye organization of T. marmoratus larvae.  相似文献   

8.
Saccadic eye movements and fixations are the behavioral means by which we visually sample text during reading. Human oculomotor control is governed by a complex neurophysiological system involving the brain stem, superior colliculus, and several cortical areas. A very widely held belief among researchers investigating primate vision is that the oculomotor system serves to orient the visual axes of both eyes to fixate the same target point in space. It is argued that such precise positioning of the eyes is necessary to place images on corresponding retinal locations, such that on each fixation a single, nondiplopic, visual representation is perceived. Vision works actively through a continual sampling process involving saccades and fixations. Here we report that during normal reading, the eyes do not always fixate the same letter within a word. We also demonstrate that saccadic targeting is yoked and based on a unified cyclopean percept of a whole word since it is unaffected if different word parts are delivered exclusively to each eye via a dichoptic presentation technique. These two findings together suggest that the visual signal from each eye is fused at a very early stage in the visual pathway, even when the fixation disparity is greater than one character (0.29 deg), and that saccade metrics for each eye are computed on the basis of that fused signal.  相似文献   

9.
The eyes and visual capacity of the naked mole-rat, Heterocephalus glaber, a subterranean rodent, were evaluated using anatomical, biochemical, and functional assays, and compared to other rodents of similar body size (mouse and gerbil). The eye is small compared to mouse, yet possesses cornea, lens, and retina with typical mammalian organization. The optic nerve cross-sectional area and fiber density are ~10% and ~50% that of gerbil, respectively. Levels per unit retinal area of 11-cis and all-trans retinal, derivatives of vitamin A associated with the visual cycle, are comparable to mouse. The corneal electroretinogram (ERG) exhibits early and late negative components that scale with flash strength; raising the body temperature of this poikilothermic animal from 30°C (normal for H. glaber ) to 37°C (normal for mouse) revealed an ERG response with typically mammalian features, but greatly attenuated and with slower kinetics. Leaving the nest chamber was a behavior correlated with light onset displayed preferentially by breeding females. Optical models of five mole-rat eyes suggest reasonable, but variable, image formation at the retina, possibly related to age. Results are consistent with amorphous light detection, possibly useful for circadian entrainment or escape behavior in the event of tunnel breeches.  相似文献   

10.
Properties of 187 neurons in the inferior wall of the cruciate sulcus, in an area where electrical stimulation evoked unidirectional saccadic eye movements, were investigated in waking cats. Of the total number 172 responded to visual stimulation. Neurons in the surface layers of the cortex responded to simple visual stimuli: light or dark spots or bars, both stationary and moving at speeds of around 30 deg/sec. These neurons showed no selectivity as regards stimulus orientation but sometimes behaved selectively toward the direction of their movements. In the intermediate layers the maximal neuronal response was obtained to a model of a bird flaping its wings. Neuronal responses in the depth of the cortex were characterized by selectivity to movement of stimuli toward or away from the animal in a certain part of the visual field, irrespective of whether a light stimulus was presented against a dark background or a dark stimulus against the light background. Responses to visual stimulation were exhibited only if the animal was in a state of activation, when the EEG showed desynchronization, and they were absent in a state of quite wakefulness. No responses were obtained to auditory or somatic stimulation. Responses to visual stimulation were not found in neurons of the medial wall of the brain beneath the cruciate sulcus, but responses were recorded to eye movements of definite size or orientation. It is postulated that at least two contiguous retinotopically organized zones exist in this part of the brain. Activity of one of them is connected with visual function, that of the other with eye movements.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 766–773, November–December, 1984.  相似文献   

11.
There are a number of statements that can be made about eye movements of monkeys during the learning of simple and complex discriminative problems that are probably applicable to a wide variety of visual tasks. There are systematic changes in eye movements as a function of practice. Some of these changes occur long after grosser measures of performance, such as frequency of correct choices, have reached an asymptote. Hence, short-term studies of visual information processing may be misleading. Duration of visual fixations and frequency of visual fixations are independent measures, reflecting different cognitive processes. Studies which measure only total looking time confound these two measures and, thus, may miss important information. Eye movements appear to be an important, if not essential, component of the chain of events constituting the cognitive processing underlying performance on visual tasks.  相似文献   

12.
Male fiddler crabs (Uca pugilator Bosc) have visual control systems that enable them to track other crabs in front or behind, and to keep potential predators to the side, where escape is easiest. The system for tracking conspecifics appears to be double, with a low-gain velocity-sensitive mechanism operating over about a 90° range, backed up by a position-sensitive mechanism at the ends of this range which is responsible for recentring the target. This system has separate front and rear ranges, with a gap in the direction of the claw. The crabs separately fixate the burrow entrance, keeping it in the direction opposite the claw. Predator evasion employs two systems simultaneously. An openloop mechanism directs the crab's translatory movements directly away from the stimulus, and a rotational mechanism using continuous feedback turns the crab so that the stimulus is kept at near 90° to the body axis. Both systems are sensitive to the angular position of the stimulus, not its velocity. Eye movements have little or no role in object tracking. An attempt is made to list Uca's known visual control systems.  相似文献   

13.
We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea), Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However, differences in compound eye morphology may be related to species differences: C. humeralis’ eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive visual interneurons.  相似文献   

14.
As animals travel through the environment, powerful reflexes help stabilize their gaze by actively maintaining head and eyes in a level orientation. Gaze stabilization reduces motion blur and prevents image rotations. It also assists in depth perception based on translational optic flow. Here we describe side-to-side flight manoeuvres in honeybees and investigate how the bees’ gaze is stabilized against rotations during these movements. We used high-speed video equipment to record flight paths and head movements in honeybees visiting a feeder. We show that during their approach, bees generate lateral movements with a median amplitude of about 20 mm. These movements occur with a frequency of up to 7 Hz and are generated by periodic roll movements of the thorax with amplitudes of up to ±60°. During such thorax roll oscillations, the head is held close to horizontal, thereby minimizing rotational optic flow. By having bees fly through an oscillating, patterned drum, we show that head stabilization is based mainly on visual motion cues. Bees exposed to a continuously rotating drum, however, hold their head fixed at an oblique angle. This result shows that although gaze stabilization is driven by visual motion cues, it is limited by other mechanisms, such as the dorsal light response or gravity reception.  相似文献   

15.
In 17 healthy subjects, we examined the characteristics of targeted movements of the forearm, flexion from the initial position of full extension taken as 0 deg to a 50 deg target angle in the elbow joint (flexor tests, FTs) and extension from the initial angle of 100 deg to the same target angle (extensor tests, ETs) with return to the initial positions. A standard movement (its trajectory corresponded to a simple trapezium) was performed under conditions of visual feedback (the value of the target angle and trajectory of the movement were visualized on the screen of a monitor); then, this movement should be reproduced by the subject (according to an acoustic signal) in the absence of visual control. Target-reaching test movements in the absence of visual feedback differed from the standard ones in a higher velocity. Blindfold reproduction of standard movements realized under kinesthetic control was accompanied in all subjects by noticeable positive systematic errors of targeted positioning (in the group, on average, 5.16 ± 0.55 and 4.83 ± 0.58 deg under FT and ET conditions, respectively). Vibrational stimulation of the muscles whose activity mainly provided the movement and positioning (m. biceps brachii in the FT cases and m. triceps brachii in the case of ETs) resulted in decreases of the errors of kinesthetic positioning; intragroup means of these errors were 2.55 ± 0.36 deg (FTs) and 2.26 ± 0.40 deg (ETs). The positioning errors demonstrated even greater decreases upon vibrational stimulation of the muscles, which were relatively inactive under conditions of the tests and underwent passive stretching in the course of the movements (m. triceps in FTs and m. biceps in ETs). Mean intragroup values of the errors in these cases were 0.46 ± 0.25 and 0.52 ± 0.31 deg, respectively. The nature of systematic positioning errors in the reproduction of targeted movements in the absence of visual control and the mechanisms underlying the influence of vibrational stimulation of the muscles involved in realization of these movements on the positioning errors under kinesthetic control are discussed.  相似文献   

16.
The landing response of tethered flying housefliesMusca domestica elicited by motion of periodic gratings is analysed. The field of view of the compound eyes of a fly can be subdivided into a region of binocular overlap and a monocular region. In the monocular region the landing response is elicited by motion from front to back and suppressed by motion from back to front. The sensitivity to front to back motion in monocular flies (one eye covered with black paint) has a maximum at an angle 60°–80° laterally from the direction of flight in the equatorial plane. The maximum of the landing response to front to back motion as a function of the contrast frequencyw/ is observed at around 8 Hz. In the region of binocular overlap of monocular flies the landing response can be elicited by back to front motion around the equatorial plane if a laterally positioned pattern is simulataneously moved from front to back. 40° above the equatorial plane in the binocular region the landing response in binocular flies is elicited by upward motion, 40° below the equatorial plane in the binocular region it is elicited by downward motion. The results are interpreted as an adaptation of the visual system of the fly to the perception of a flow field having its pole in the direction of flight.  相似文献   

17.
Under a 90° rotation of motor space relative to visual space, human two-dimensional aiming movements frequently take the form of smooth arcs such as spirals and semi-circles. A time-independent differential equation explains this tendency in terms of a rotation-induced vector field made up, at each point in the two-dimensional space, of two input vectors. One vector represents a visual error signal and the other represents a motor error signal. A trajectory's instantaneous direction of movement at each point can be described as the resultant of the two vectors. This mathematical formulation incorporates plausible visual-motor mechanisms and, when expressed in polar coordinates, leads to a new method for analyzing the spatial properties of movements (i.e., movement paths). Plots of the angle between the resultant and the target vector () against distance from the target (r, in the polar representation) summarize the arc-shaped movement paths as a simple relation that can be analyzed statistically with respect to properties such as monotonicity. The polar representation is a plausible representation of visually-guided movements, with the visual error vector functioning as an objective function relative to which behavior is optimized. We extend the model and ther, movement path analysis to non-90° rotations, and we find that the model predicts an observed qualitative shift in behavior for rotations greater than 90°. It also predicts qualitatively different path shapes observed under visual-motor reflections.This work was performed while the first author was under the support of Grant IST-8511589 from the National Science Foundation and Grant NCC2-307 from the National Aeronautics and Space Administration  相似文献   

18.
Cambrian view     
The analysis of visual systems is a valuable method of assessing phylogenetic processes. As in the present animal world, we find simple and complex systems in the Lower Cambrian. One may detect “simple eyes” for example with an advanced design in lobopodians, while the existence of even more simple “simple eyes” is very probable but still to be proved. More complex systems are to be found. In Leanchoilia illecebrosa Hou, 1987 and Leanchoilia superlata Walcott, 1912 there are probable dorsal median eyes and a pair of fine, stalked ventral eyes. Both systems may contribute to phylogenetic and systematic discussions. These presumably movable stalked eyes may be regarded as an adaptation to a mobile lifestyle. They suggest that the physiologic principle of nystagmus to stabilise the visual world of an animal in motion was already realised in Leanchoilia, perhaps for the first time. To analyse the surface of the early eyes from the Lower Cambrian – not only of Leanchoilia, but of any other forms as well – the number, shape and other parameters of the lenses could lead to further knowledge regarding vision in early invertebrates.  相似文献   

19.
Eye movements evoked by local electrical stimulation of the dorsal nucleus of the lateral geniculate body were analyzed after removal of the visual cortex and in intact animals during trials on awake cats. No significant difference was observed between the eye movement patterns of the two animal groups evoked by electrical stimulation. These movements could be classed into three main groups: those unassociated with the starting position of the eyes in orbit (or unidirectional movements), goal-directed, and centered movements, with direction depending on the initial position of the eyes in their orbits. Our findings indicate that the cortical visual areas are neither the principal nor an indispensable link in the chain for transmitting signals evoked by (electrically) stimulating the geniculate body from the cortical structures of the direct visual pathway towards the operative links of the oculomotor system. Potential pathways for conducting information from the dorsal nucleus of the lateral geniculate body to oculomotor system structures are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 164–170, March–April, 1987.  相似文献   

20.
Summary Triatoma bugs turn away from a vertical black stripe on the inner surface of a rotating or oscillating drum by keeping it in the lateral visual field at an angle relative to the long axis of the body. The value of depends on the angular velocity w of the drum. Below w=5° s–1, increases with increasing w, and the stripe can lie to either side of the animal. Occasionally, the bugs switch between these two tracking modes. Above w=5° s–1, remains nearly constant at about 120° and the stripe lags behind the animal. We call this lateral tracking. At velocities over 5° s–1 the animals track the leading edge of a wide black stripe in the same manner as they track a narrow stripe. Below 5° s–1 they walk towards the centre of the stripe (skototaxis). Objects moving towards the insect above the horizon are also fixated at an angle of about 120°. Lateral tracking is mediated mainly by the dorsal part of the visual field, as can be shown by occluding either the dorsal or ventral halves of the eyes. The walking speed of the bugs increases significantly during lateral tracking of an oscillating stripe compared with that during frontal fixation of a stationary one. We therefore interpret lateral tracking as an escape response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号