首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
The ammonium nitrogen oxidation process (ANOP) is the first and most important step for nitrogen removal in constructed wetlands (CWs). The process was investigated by observing the products generated from the ANOP in on-site aerobic systems with selective inhibition of nitrite-oxidizing bacteria (NOB) through appropriate regulation of the pH, temperature and dissolved oxygen concentrations. The effects of season, plant type and density on ANOP were also studied to determine the optimal conditions for the ANOP. Nitrite accumulation was found in the aerobic experiments and greater ammonia-oxidizing bacteria than NOB numbers, showing that partial nitrification to nitrite was occurring in the studied CWs. The nitrogen removal rate was positively linearly correlated with the nitrite accumulation rate, and so the more NH3-N removed by ANOP, the greater the resulting nitrogen removal. Season and plant density had a significant effect on the ANOP. However, there were no significant differences between the units planted with common reed and cattail.  相似文献   

2.
Nitrate removal rates and dissolved oxygen (DO) levels were evaluated in small batch-mode wetland mesocosms with two different plant species, cattail (Typha spp.) and bulrush (Scirpus spp.), and associated mineral-dominated sediment collected from a mature treatment wetland. Nitrate loss in both cattail and bulrush mesocosms was first-order in nature. First-order volumetric rate constants (kV) were 0.30 d−1 for cattail and 0.21 d−1 for bulrush and rates of nitrate loss were significantly different between plant treatments (p < 0.005). On an areal basis, maximum rates of nitrate removal were around 500 mg N/(m2 d) early in the experiment when nitrate levels were high (> 15 mg N/L). Areal removal rates were on average 25% higher in cattail versus bulrush mesocosms. DO in mesocosm water was significantly higher in bulrush versus cattail (p < 0.001). DO in bulrush generally ranged between 0.5 and 2 mg/L, while DO in cattail mesocosms was consistently below 0.3 mg/L. Based on cumulative frequency analysis, DO exceeded 1 mg/L around 50% of the time in bulrush, but only 2% of the time in cattail. DO in bulrush exhibited a statistically significant diel cycle with DO peaks in the late afternoon and DO minimums in the early morning hours. Difference in nitrate removal rates between wetland plant treatments may have been due to differing plant carbon quality. Cattail litter, which has been shown in other studies to exhibit superior biodegradability, may have enhanced biological denitrification by fueling heterotrophic microbial activity, which in turn may have depressed DO levels, a prerequisite for denitrification. Our results show that the cattail is more effective than bulrush for treating nitrate-dominant wastewaters.  相似文献   

3.
The influence of light weight aggregates made of fly ash from sewage sludge thermal treatment (FASSTT LWA) on the nitrogen removal efficiency from artificial wastewater in constructed wetlands (CW) with vertical flow reed bed was investigated. Thirty lysimeters with six different double-layer bed constructions (upper layer of FASSTT LWA with thicknesses of: 0 cm, 12 cm, 25 cm, 50 cm, and 100 cm of the total depth of the lysimeter, above a lower gravel layer), either with or without reed plants were operated with wastewater hydraulic loading rate of 4.67 mm/d. During a six-month experiment, high efficiency of ammonia removal was observed. The influence of FASSTT LWA as a bed material and the presence of reed on CW treatment efficiency was determined. The highest total nitrogen removal efficiency, 59.5%, was obtained in the CW with double-layer lysimeters consisting of 25% FASSTT LWA (upper layer), and 75% gravel (lower layer), and planted with reed.  相似文献   

4.
Ferric-Carbon Micro-Electrolysis (Fe/C-M/E) material had been widely used for the pretreatment of wastewater. Therefore, we hypothesized that Fe/C-M/E material could enhance the treatment of domestic sewage when it was integrated into constructed wetlands (CWs). In this study, CWs integrated with Fe/C-M/E material were developed. Druing the experiment of effect of vegetation on the performance of CWs, percentages of NH4+-N, NO3?-N, total nitrogen (TN), and Chemical Oxygen Demand (COD) removed in polyculture (W1) were up to 91.8%, 97.0%, 92.3%, and 85.4%, respectively, which were much higher than those in Lythrum salicaria monoculture (W2) and Canna indica monoculture (W3). In the experiment of temperature influences on the removal efficiency of CWs, temperature substantially influenced the performance of CWs. For example, NO3?-N removal percentages of W1, W2, and W3 at high temperature (25.5°C and 19.8°C) were relatively stable and greater than 85.4%. At 8.9°C, however, a sharp decline of NO3?-N removal percentage was observed in all CWs. Temperature also influenced the Chemical Oxygen Demand (COD) removal and soil microbial activity and biomass. Overall, the polyculture (Lythrum salicaria +Canna indica) showed the best performance during most of the operating time, at an average temperature ≥ 19.8°C, due to the functional complementarity between vegetation. All the CWs consistently achieved high removal efficiency (above 96%) for TP in all experiments, irrespective of vegetation types, phosphorous loadings, and temperatures. In conclusion, polyculture was an attractive solution for the treatment of domestic sewage during most of the operating time (average temperature ≥ 19.8°C). Furthermore, CWs with Fe/C-M/E material were ideally suitable for domestic sewage treatment, especially for TP removal.  相似文献   

5.
The performance and reliability of the CWM1-RETRASO model for simulating processes in horizontal subsurface flow constructed wetlands (HSSF CWs) and the relative contribution of different microbial reactions to organic matter (COD) removal in a HSSF CW treating urban wastewater were evaluated. Various different approaches with diverse influent configurations were simulated. According to the simulations, anaerobic processes were more widespread in the simulated wetland and contributed to a higher COD removal rate [72-79%] than anoxic [0-1%] and aerobic reactions [20-27%] did. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis [58-73%]. All results provided by the model were in consonance with literature and experimental field observations, suggesting a good performance and reliability of CWM1-RETRASO. According to the good simulation predictions, CWM1-RETRASO is the first mechanistic model able to successfully simulate the processes described by the CWM1 model in HSSF CWs.  相似文献   

6.
Research was conducted at Middle East Technical University (METU), Ankara, Turkey in 2000 to determine whether a reed bed filled with an economical Turkish fill media that has high phosphorus (P) sorption capacity, could be implemented and operated successfully under field conditions. In batch-scale P-sorption experiments, the P-sorption capacity of the blast furnace granulated slag (BFGS) of KARDEMIR Iron and Steel Ltd., Co., Turkey, was found to be higher compared to other candidate filter materials due to its higher Ca content and porous structure. In this regard, a vertical subsurface flow constructed wetland (CW) (30 m(2)), planted with Phragmites australis was implemented at METU to treat primarily treated domestic wastewater, at a hydraulic rate of 100 mm d(-1), intermittently. The layers of the filtration media constituted of sand, BFGS, and gravel. According to the first year monitoring study, average influent and effluent total phosphorus (TP) concentrations were 6.61+/-1.78 mg L(-1) and 3.18+/-1.82 mg L(-1); respectively. After 12 months, slag samples were taken from the reed bed and P-extraction experiments were performed to elucidate the dominant P-retention mechanisms. Main pools for P-retention were the loosely-bounded and Ca-bounded P due to the material's basic conditions (average pH>7.7) and higher Ca content. This study indicated the potential use of the slag reed bed with higher P-removal capacity for secondary and tertiary treatment under the field conditions. However, the P-sorption isotherms obtained under the laboratory conditions could not be used favorably to determine the longevity of the reed bed in terms of P-retention.  相似文献   

7.
For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs), two horizontal subsurface flow(HSSF) CWs and two vertical subsurface flow(VSSF) CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P) were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation.  相似文献   

8.
The potential of two plant species, Phragmites australis (common reed) and Typha latifolia (cattail), in the phytoremediation process of selenium (Se) was studied in subsurface-flow constructed wetland (SSF). Se was supplemented continuously at a concentration of 100 microg Se L(-1) in the inlet of the cultivation beds of the SSF. Water samples collected from the outlet of the Phragmites bed after 1, 3, 6, 9, and 12 wk of treatments showed that Se content was under detectable limits. Water samples collected from the Typha bed at the same five periods showed that Se concentrations in the outlet were 55, 47, 65, 76, and 25 microg/L, respectively. The results of bioaccumulation in the biomass of both species after 12 wk of treatment indicated that Typha plants accumulated Se mainly in fine roots. Phragmites accumulated Se mainly in leaves and rhizomes, and moderate levels were found in stems and fine organic materials. The results indicate that common reed is a very good species for Se phytoextraction and phytostabilization (immobilization) and that cattail is only a phytostabilization species. The use of common reed and cattail for Se phytoremediation in a SSF system and in constructed wetland models are discussed.  相似文献   

9.
Common reed (Phragmites australis) and narrow-leaved cattail (Typha angustifolia L.) are two plant species used widely in artificial wetlands constructed to treat wastewater. In this study, the community structure and diversity of root-associated bacteria of common reed and narrow-leaved cattail growing in the Beijing Cuihu Wetland, China, were investigated using 16S rDNA library and PCR–denaturing gradient gel electrophoresis methods. Root-associated bacterial diversity was higher in common reed than in narrow-leaved cattail. In both plant species, the dominant root-associated bacterial species were Alpha, Beta and Gamma Proteobacteria, including the genera Aeromonas, Hydrogenophaga, Ideonella, Uliginosibacterium and Vogesella. Acidobacteria, Actinobacteria, Nitrospirae and Spirochaetes were only found in the roots of common reed. Comparing the root-associated bacterial communities of reed and cattail in our system, many more species of bacteria related involved in the total nitrogen cycle were observed in reed versus cattail, while species involved in total phosphorus and organic matter removal were mainly found in cattail. Although we cannot determine their nutrient removal capacity separately, differences in the root-associated bacterial communities may be an important factor contributing to the differing water purification effects mediated by T. angustifolia and P. australis wetlands. Thus, further work describing the ecosystem functions of these bacterial species is needed, in order to fully understand how effective common reed- and narrow-leaved cattail-dominated wetlands are for phytoremediation.  相似文献   

10.
Replacement of native macrophyte species with exotic or invasive ones affects the quality of detritus entering streams and can alter nutrient cycles and community structure in aquatic ecosystems. Decomposition of air‐dried native hardstem bulrush (Schoenoplectus acutus), invasive southern cattail (Typha domingensis), and exotic common reed (Phragmites australis) were studied in an urban stream (Las Vegas, Nevada, USA) using litter bags. Samples were analyzed for dry mass, lignin, nutrients, trace elements, and macroinvertebrates. Litter type and sediment deposited on plant material influenced material loss. Trace elements arsenic and selenium increased in plant material to concentrations considered marginal for ecosystem contamination by exposure day 76. Mercury increases were inconsistent across plant species and did not exceed limits. Bulrush decomposed faster, and tended to have higher selenium concentrations, than did invasive southern cattail and exotic common reed. Macroinvertebrate communities colonizing litter bags were similar across plant litter types, but differed from mesh‐only bags and samples collected with a kick‐net. Macroinvertebrate exclusion resulted in significantly lower loss rates, but functional feeding groups such as shredders were not associated with decomposition differences. The caddisfly, Smicridea, physically modified stem material and aided in processing, but microbes appeared most important in biological material breakdown. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In two intertidal marshes, the vertical distribution in the sediment and inhibition by ammonium of methane oxidation were investigated by slurry incubation experiments. The two sites differ in their dominant vegetation type, i.e., reed and bulrush, and in their heights above sea level. The reed site was elevated with respect to the bulrush site, resulting in a lower frequency and duration of flooding and, consequently, a higher potential for methane oxidation. Methane oxidation decreased with depth in the bulrush and reed slurries, although methane oxidation associated with root material from the bulrush plants increased with depth. Reed root material had a limited capacity for methane oxidation and showed no significant increase with depth. Inhibition of methane oxidation by ammonium was observed in all samples and depended on methane and ammonium concentrations. Increasing ammonium concentrations resulted in greater inhibition, and increasing methane concentrations resulted in less. Ammonium concentrations had to exceed methane concentrations by at least 30-fold to become effective for inhibition. This ratio was found only in the surface layer of the sediment. Hence, the ecological relevance for ammonium inhibition of methane oxidation in intertidal marshes is rather limited and is restricted to the surface layer. Nitrate production was restricted to the 0- to 5-cm-depth slurries.  相似文献   

12.
The first full-scale constructed wetland (CW) in the Czech Republic was built in 1989 and there are now three tertiary systems and 50 secondary treatment facilities. We report here on the design and operational efficiencies of these facilities. All CWs have been designed with horizontal subsurface flow. Coarse sand, gravel and crushed stones with size fraction of 4–16 mm are commonly used as substrates. The area of vegetated beds ranges between 18 and 4500 m2 and operational CWs are designed for population equivalent (PE) of 4 to 1,100. Common reed (Phragmites australis) is the most frequently used macrophyte species.Results from systems studied during 1994 and 1995 show that the effluent concentrations of organics and suspended solids (SS) are well below the required discharge limits. In most cases the final effluent BOD5 concentration is <10 mg l–1. The relationship between vegetated bed BOD5 inflow loadings (L 0) and outflow loadings (L) is very strong (r=0.92). Constructed wetlands with subsurface horizontal flow usually do not remove larger amounts of nitrogen and phosphorus. The results from five Czech constructed wetlands show that nitrogen removal varies among systems, but the amount of removed nitrogen is very predictable. A regression equation between nitrogen inflow loading (L 0) and outflow loading (L) produces a strong correlation (r=0.98). The most important process responsible for phosphorus removal in wetlands is precipitation with soil Ca, Fe and Al. However, the subsurface horizontal flow constructed wetlands use mostly coarse gravel and/or sandy materials and this provides little or no P precipitation. Results from monitored systems in the Czech Republic show that the percentage phosphorus removal varies widely among systems and is lower than the percentage removal of organics and suspended solids.  相似文献   

13.
Anaerobic fluidized bed whey treatment   总被引:1,自引:0,他引:1  
Anaerobic treatment of moderate strength lactic casein why permeate [2000-7000 mg/L soluble chemical oxygen demand (SCOD)] is possible in fluidized bed reactors. Removal efficiencies up to 90% were obtained at organic removal rates of 7.7 kg SCOD M(-3) day(-1) and efficiencies of 70% were obtained at organic removal rates of 19.5 kg SCOD M(-3) day(-1), both at 35 degrees C. A removal rate of 3.0 kg SCOD M(-3) day(-1) at 50% removal efficiency was obtained at 15 degrees C. Nutrient requirements were much lower than for CSTR systems, and no supplemental nitrogen or phosphorus was required. Removal rates increased and removal efficiency decreased as the organic loading increased. Microorganism concentration increased with decreasing temperature, compensating for reduced reaction rates at lower temperatures.  相似文献   

14.
The fate of ammoniacal-nitrogen (NH4-N) was studied in a lab-scale downflow reed bed system treating an artificial landfill leachate. Individual reed beds were saturated by the leachate, then drained and rinsed by tap water. NH4-N was removed by a two-stage process, adsorption onto the reed bed media followed by nitrification into nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N). Decrease of the NH4-N level of the leachate was observed when the reed beds were saturated. By rinsing the beds, part of the NH4-N adsorbed inside the bed matrices was released into the rinse water. The presence of NO2- and NO3-N in the rinse water demonstrated that nitrification took place while NH4-N was retained inside the bed matrices. For artificial leachates with NH4-N levels of 150±5 mg/l, an average removal rate of 44% in a 3 h treatment was achieved. Mass balance analysis indicated that adsorption, transformations into NO2- and NO3-N accounted for 64, 4 and 24% of the NH4-N removal, respectively. This study also demonstrated that in general a greater rate of effluent recirculation around downflow reed beds gives higher NH4-N removal.  相似文献   

15.
刘存歧  陆健健  李贺鹏 《生态学报》2007,27(9):3663-3669
研究了长江口崇明东滩潮滩湿地表层沉积物的土壤酶活性和环境因子沿高程的陆向变化及其它们之间的相关性。结果表明,在潮滩湿地表层沉积物中的全磷(TP)、全氮(TN)和有机质(OM)的含量,随着高程的增加,其含量呈上升趋势,而沉积物平均粒径(AGS)和溶解无机磷(DIP)含量逐渐降低。崇明东滩表层沉积物中碱性磷酸酶活性沿高程梯度有增加的趋势,与沉积物平均粒径和溶解无机磷含量呈极显著负相关(p<0.01),与有机质、总氮、总磷含量呈显著正相关(p<0.05),反映出碱性磷酸酶活性受底物和产物并存机制的诱导或抑制。过氧化氢酶活性随高程也有逐渐增大的趋势,其活性与有机质、总氮、总磷呈显著正相关与溶解无机磷和沉积物平均粒径呈负相关(p<0.05),充分反映了随着演替的发展,沉积物的肥力逐渐增高的特点,也反映了沿高程梯度沉积物生物氧化作用逐渐增强。转化酶活性从藻类盐渍带到芦苇(Phragmites australis)带变化并不明显,在海三棱藨草(Scirpus mariqueter)带略高。蛋白酶活性从藻类盐渍带到芦苇带有降低的趋势,蛋白酶活性的高低更决定于有机质中蛋白质的含量而与有机质总量无关,说明蛋白酶可能主要由硅藻产生。  相似文献   

16.
The main purpose of this study was to treat organic pollution, ammonia and heavy metals present in landfill leachate by the use of constructed wetland systems and to quantify the effect of feeding mode. The effect of different bedding material (gravel and zeolite surface) was also investigated. A pilot-scale study was conducted on subsurface flow constructed wetland systems operated in vertical and horizontal mode. Two vertical systems differed from each other with their bedding material. The systems were planted with cattail (Typha latifolia) and operated identically at a flow rate of 10 l/day and hydraulic retention times of 11.8 and 12.5 day in vertical 1, vertical 2 and horizontal systems, respectively. Concentration based average removal efficiencies for VF1, VF2 and HF were NH4–N, 62.3%, 48.9% and 38.3%; COD, 27.3%, 30.6% and 35.7%; PO4–P, 52.6%, 51.9% and 46.7%; Fe(III), 21%, 40% and 17%, respectively. Better NH4–N removal performance was observed in the vertical system with zeolite layer than that of the vertical 2 and horizontal system. In contrast, horizontal system was more effective in COD removal.  相似文献   

17.
The potential of reed beds to act as biofilters of pathogenic and environmental mycobacteria was investigated through examination of the fate of mycobacteria in a constructed reed bed filtering effluent from a large captive wildfowl collection. Particular emphasis was placed on the presence and location of Mycobacterium avium – the causal agent of avian tuberculosis (ATB) – in an effort to clarify the potential role of reed beds in the control of this disease. Water, sediment, and stems and roots of common reed ( Phragmites australis ) and greater reedmace ( Typha latifolia ) were taken from 15 locations within the reed bed plus sites upstream and downstream. Samples were analysed for mycobacteria using PCR and specifically for M. avium using nested PCR. Environmental mycobacteria were found throughout the entire reed bed but M. avium was not found downstream of the first vegetation growth. The reed bed was found to effectively remove M. avium from the water through a combination of sedimentation and adsorption onto vegetation stems. The results of this study show that constructed reed beds composed of a settlement lagoon and one or more vegetation beds can act as valuable and ecologically friendly tools in the environmental control of ATB.  相似文献   

18.
The landward changes of soil enzyme activities and physico-chemical properties of the surface sediment in Chongming Dongtan of the Yangtze River Estuary, were studied. Along the elevation gradient or succession series, the contents of total phosphorus (TP), total nitrogen (TN) and organic matter (OM) in the sediment increased, but the average grain size (AGS) of the sediment and the content of the dissolved inorganic phosphorus (DIP) decreased. The activity of alkaline phosphatase increased gradually along the elevation gradient, and was positively correlated with the values of TP, TN and OM (P<0.05), but negatively to AGS and DIP (P<0.05). It was correlated with a mechanism of substrate inductivity and product inhibition. Catalase activity had the similar trend of gradual increase along the elevation gradient, enhancing the fertility of the soil and the oxidative process of OM in the sediment. Along the succession series, from the tidal flat to the bulrush (Scirpus mariqueter) zone, and then to the reed (Phragmites australis) zone, the activity of sucrase only changed insignificantly, but there was a higher activity in the bulrush zone than in other zones. The activity of proteinase decreased from the tidal flat to the reed zone, and the activity was negatively correlated with OM and TN (P<0.05), but positively with DIP (P<0.05). Through the succession zones a decrease in the number of diatoms resulted in a decline in the concentration of protein, which influenced the proteinase activity, suggesting that the proteinase in the sediment was produced by diatoms.  相似文献   

19.
Liu C Q  Lu J J  Li H P 《农业工程》2007,27(9):3663-3669
The landward changes of soil enzyme activities and physico-chemical properties of the surface sediment in Chongming Dongtan of the Yangtze River Estuary, were studied. Along the elevation gradient or succession series, the contents of total phosphorus (TP), total nitrogen (TN) and organic matter (OM) in the sediment increased, but the average grain size (AGS) of the sediment and the content of the dissolved inorganic phosphorus (DIP) decreased. The activity of alkaline phosphatase increased gradually along the elevation gradient, and was positively correlated with the values of TP, TN and OM (P<0.05), but negatively to AGS and DIP (P<0.05). It was correlated with a mechanism of substrate inductivity and product inhibition. Catalase activity had the similar trend of gradual increase along the elevation gradient, enhancing the fertility of the soil and the oxidative process of OM in the sediment. Along the succession series, from the tidal flat to the bulrush (Scirpus mariqueter) zone, and then to the reed (Phragmites australis) zone, the activity of sucrase only changed insignificantly, but there was a higher activity in the bulrush zone than in other zones. The activity of proteinase decreased from the tidal flat to the reed zone, and the activity was negatively correlated with OM and TN (P<0.05), but positively with DIP (P<0.05). Through the succession zones a decrease in the number of diatoms resulted in a decline in the concentration of protein, which influenced the proteinase activity, suggesting that the proteinase in the sediment was produced by diatoms.  相似文献   

20.
Two bed media were tested (gravel and Filtralite) in shallow horizontal subsurface flow (HSSF) constructed wetlands in order to evaluate the removal of ammonia and nitrate for different types of wastewater (acetate-based and domestic wastewater) and different COD/N ratios. The use of Filtralite allowed both higher mass removal rates (1.1 g NH4–N m−2 d−1 and 3 g NO3–N m−2 d−1) and removal efficiencies (>62% for ammonia, 90–100% for nitrate), in less than 2 weeks, when compared to the ones observed with gravel. The COD/N ratio seems to have no significant influence on nitrate removal and the removal of both ammonia and nitrate seems to have involved not only the conventional pathways of nitrification–denitrification. The nitrogen loading rate of both ammonia (0.8–2.4 g NH4–N m−2 d−1) and nitrate (0.6–3.2 g NO3–N m−2 d−1) seem to have influenced the respective removal rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号