首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversity in a sample of an aquatic plantButomus umbellatus from 37 localities in Czechia and Slovakia was studied by analyzing six polymorphic loci in three enzymatic systems (SKDH, PGD and AAT). Diversity among ramets was low in eight populations with relatively extensive sampling (only one population possessed more than one multilocus genotype), suggesting high clonality of reproduction in these populations. However, among-population diversity was high: G = 0.782 and 0.881 for the samples of diploid and triploid populations, respectively. Heterozygosity of individual plants averaged over variable loci was also high: H = 0.554 for diploids and 0.453 for triploids. Genetic differentiation among populations was additionally studied using cluster analysis. Several populations of diploids clustered separately from all other populations, whereas another group of diploid populations clustered with some triploid populations, indicating the possibility of relatively recent, probably multiple origin of these triploid populations from their diploid progenitors. Association between matrices of Nei’s genetic distances among populations from different localities and matrices of geographic distances among these localities revealed highly significant correlation for the sample of diploid populations (r = 0.60,P < 0.001) but no significant correlation for the sample of triploid populations (r = 0.02,P = 0.593). These results indicate a spatial structure of diploid populations in accordance with the isolation by distance model, and a random distribution of genotypes among triploid populations ofB. umbellatus.  相似文献   

2.
Levels and distribution of genetic variation were studied in central and western European populations of Taraxacum section Ruderalia containing differing mixtures of sexual diploid and asexual triploid plants. All sexual populations were panmictic with their variation partitioned mainly among populations. Genotypic diversity in triploid samples was very high with few clones widespread and many clones restricted to one or a few populations. Extensive amounts of gene (pollen) flow between the diploid and triploid components of a population were inferred from the following data: (1) the two ploidy levels share all major allozyme polymorphisms; (2) the intrapopulational homogeneity in genic variation between diploids and triploids contrasts strongly with the geographic differentiation at each ploidy level separately; (3) population-unique alleles simultaneously occur at the two ploidy levels; (4) not only sexuals but also asexuals generally simulate Hardy-Weinberg expectations. Most likely, intrapopulational gene exchange occurs bidirectionally by mechanisms such as reductional pollen meiosis in apomictic plants, facultative apomixis, and formation of unreduced gametes in sexuals. Thus, diploid and triploid Taraxacum section Ruderalia are less genetically isolated than has previously been supposed and probably form a cohesive evolutionary unit with the level at which gene pools are shared differing by population.  相似文献   

3.
Information on the spatial distribution of cytotypes and karyotype variation in plants is critical for studies of the origin and evolution of polyploid complexes. Here, the spatial distribution of cytological races and intraspecific variation in the karyotype of Lycoris radiata, an endemic species to East Asia, is investigated. Conventional karyotype analysis methods were used to determine ploidy level and karyotypical characteristics in 2,420 individuals from 114 populations of Lradiata nearly covering the whole distribution areas in China. Of 114 populations studied, 52 (45.61%), 58 (50.88%), and 4 (3.51%) are diploid, triploid, and mixoploid populations, respectively, with 1,224, 1,195, and 1 individuals being diploid, triploid, and tetraploid, respectively. The triploid possesses a much wider distribution range than the diploid, with the former almost occupying the entire range of this complex species in East Asia and the latter distributing in the middle and east regions of China. Triploids tend to occur at high altitudes, and the relationship between the ploidy and altitude is significantly positive but low (r= 0.103, p < 0.01). About 98.6% of examined bulbs have a common karyotype consisting of 22 or 33 acrocentric (A) chromosomes. Some aberrant chromosomes which should be generated from A‐type chromosome have been found including metacentrics (m), small metacentrics (m′), and B‐type chromosome. The results can provide a fundamental cytogeographic data for further studies on the evolutionary origins and adaptive divergences of polyploids, especially the triploid, within Lradiata using molecular and/or ecological methods in the future.  相似文献   

4.
ABSTRACT.
  • 1 The occurrence of pseudogamous triploid females in populations of the diploid species Ribautodelphax pungens (Ribaut) was studied throughout Europe.
  • 2 Considerable differences in triploid frequencies were found between populations but no regular geographic pattern was discerned.
  • 3 Within populations triploid frequencies proved to be stable from generation to generation.
  • 4 The twofold reproductive advantage of the pseudogamous triploid females is counterbalanced by active mate discrimination by diploid males against the pseudogamous triploid females in populations with high triploid frequencies.
  • 5 Sexual diploid and pseudogamous triploid females showed no differences in phenology.
  • 6 Differential winter mortality was found between diploid and triploid larvae.
  相似文献   

5.
Hybridisation between diploid (2n=28) dwarf birch Betula nana L. and tetraploid (2n=56) downy birch B. pubescens Ehrh. has occurred in natural populations in Iceland. About 10% of birch plants randomly collected are triploid (2n=42) hybrids. Ribosomal gene mapping on chromosomes and genomic in situ hybridisation confirms the hybridity. However, the triploid hybrids are not morphologically distinct, i.e. they are not different from diploid and tetraploid birch plants that have intermediate morphology. The triploid hybrids have evidently played an important role in driving bi-directional gene flow between these two species. This paper reviews the extent of interspecific hybridisation in selected birch woodland populations and discusses the significance of natural hybridisation and introgression in birch.  相似文献   

6.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

7.
Pollen development in plants with different ploidy levels of Euphorbia dulcis is similar but some ultrastructural differences do occur. In pollen of diploid plants large aggregations of rough endoplasmic reticulum [RER] are attached to the pollen wall near the young generative cell but such aggregations are not present in other karyotypes. Plastids are detected only in young generative cells of triploid plants. In diploid plants the generative cell becomes spindle-shaped, in triploid and tetraploid plants it remains round during the movement from the pollen wall to the center of the vegetative cell. The intine surrounding the generative cell in 3n plants is thinner than that found in 2n and 4n plants. Pollen grains in tetraploid plants are twice as large as those in diploid plants. Pollen viability is 90% in 2n plants, but only 10% in 4n plants.  相似文献   

8.
Analysis of 368 plants derived from 239 natural populations showed that this taxonomically perplexing and wide-ranging species-complex consists of diploids (n = 8), tetraploids, hexaploids and octoploids. Microsporocytes were the source of most of the chromosome counts. Meiosis was basically regular. Multivalent formation was uncommon, but 11 % of all the plants examined had one or more full-sized extra chromosomes. The frequency of plants with extra chromosomes varied significantly among the taxa, from 0 (five varieties) to over 20 % (two varieties). Except in one instance, where one population yielded a diploid and a triploid, different ploidy levels were not found in the same population. The frequency of diploid, tetraploid, hexaploid and octoploid populations was, respectively, 71, 22, 4 and 2%. Variety obovatum appears to be exclusively diploid, and var. aphanactis exclusively tetraploid. Diploids and one or more polyploid levels occurred in the other taxa. No correlation was found between polyploidy and geological history, soils, topography or climate, nor were the polyploids more widely distributed than the diploids. Some of the polyploid populations seem to have been derived from inter-varietal hybridizations, but others do not. The complex has a “pillar” structure in which 10 diploid taxa support a three-level polyploid superstructure. The available evidence suggests that the major role of polyploidy here has been to stabilize the products of intra- and inter-varietal hybridizations.  相似文献   

9.
  • Although reproductive assurance has been suggested to be one of the most important factors shaping the differential distributional patterns between sexuals and asexuals (geographic parthenogenesis), it has only rarely been studied in natural populations of vascular plants with autonomous apomixis. Moreover, there are almost no data concerning the putative relationship between the level of apomictic versus sexual plant reproduction on one hand, and reproductive assurance on the other.
  • We assessed the level of sexual versus apomictic reproduction in diploid and triploid plants of Hieracium alpinum across its distributional range using flow cytometric analyses of seeds, and compared the level of potential and realized seed set, i.e. reproductive assurance, between the two cytotypes under field and greenhouse conditions.
  • Flow cytometric screening of embryos and endosperms of more than 4,100 seeds showed that diploids produced solely diploid progeny sexually, while triploids produced triploid progeny by obligate apomixis. Potential fruit set was much the same in diploids and triploids from the field and the greenhouse experiment. While in the pollination‐limited environment in the greenhouse apomictic triploids had considerably higher realized fruit set than sexual diploids, there was no significant difference between cytotypes under natural conditions. In addition, sexuals varied to a significantly larger extent in realized fruit set than asexuals under both natural and greenhouse conditions.
  • Our results indicate that triploid plants reproduce by obligate apomixis, assuring more stable and predictable fruit reproduction when compared to sexual diploids. This advantage could provide apomictic triploids with a superior colonisation ability, mirrored in a strong geographic parthenogenesis pattern observed in this species.
  相似文献   

10.
Diploid and triploid brown trout Salmo trutta were acclimated for 6 weeks on two feeding regimes (floating and sinking). Thereafter, aggression and surface feeding response were compared between pairs of all diploid, all triploid and diploid and triploid S. trutta in an experimental stream. In each pair‐wise matching, fish of similar size were placed in allopatry and rank was determined by the total number of aggressive interactions recorded. Dominant individuals initiated more aggression than subordinates, spent more time defending a territory and positioned themselves closer to the surface food source (Gammarus pulex), whereas subordinates occupied the peripheries. In cross ploidy trials, diploid S. trutta were more aggressive than triploid, and dominated their sibling when placed in pair‐wise matchings. Surface feeding, however, did not differ statistically between ploidy irrespective of feeding regime. Triploids adopted a sneak feeding strategy while diploids expended more time defending a territory. In addition, we also tested whether triploids exhibit a similar social dominance to diploids when placed in allopatry. Although aggression was lower in triploid pairs than in the diploid and triploid pairs, a dominance hierarchy was also observed between individuals of the same ploidy. Dominant triploid fish were more aggressive and consumed more feed items than subordinate individuals. Subordinate fish displayed a darker colour index than dominant fish suggesting increased stress levels. Dominant triploid fish, however, appeared to be more tolerant of subordinate individuals and did not display the same degree of invasive aggression as seen in the diploid and diploid or diploid and triploid matchings. These novel findings suggest that sterile triploid S. trutta feed similarly but are less aggressive than diploid trout. Future studies should determine the habitat choice of triploid S. trutta after release and the interaction between wild fish and triploids during the breeding season prior to utilization of triploids as an alternative management strategy within freshwater fisheries.  相似文献   

11.
Although there is an extensive literature on the genetic attributes of allopolyploids, very little information is available regarding the genetic consequences of autopolyploidy in natural populations. We therefore addressed the major predicted genetic consequences of autopolyploidy using diploid and tetraploid populations of Tolmiea menziesii. Individual autotetraploid plants frequently maintain three or four alleles at single loci: 39% of the 678 tetraploid plants exhibited three or four alleles for at least one locus. Heterozygosity was also significantly higher in autotetraploid populations than in diploid populations: H° = 0.070 and 0.237 in diploid and tetraploid Tolmiea, respectively. Most of the genetic diversity in T. menziesii is maintained within populations (ratio of gene diversity within populations to mean total genetic diversity = 0.636). The total genetic diversity due to differentiation between the two cytotypes is only 0.055. Such a low degree of differentiation between cytotypes would be expected between a diploid and its autotetraploid derivative. Most diploid and all tetraploid populations examined are in genetic equilibrium. Diploid and tetraploid Tolmiea share three or four alleles at six of eight polymorphic loci. This suggests that either autotetraploid Tolmiea was formed via crossing of genetically different diploids (perhaps via a triploid intermediate) or autopolyploidy occurred more than once in separate individual plants, followed by later crossing of autotetraploids.  相似文献   

12.
Ploidy level and geographical distribution were investigated in Japanese Lonicera caerulea L. Flow cytometric analysis revealed the presence of DNA diploid and DNA tetraploid plants in Japan. Chromosome observation confirmed that diploid and tetraploid plants showed 2n = 2x = 18 and 2n = 4x = 36, respectively. The DNA diploid populations were found only in lowland mires, Betsukai, Bekanbeushi, Kushiro and Kiritappu located in eastern Hokkaido. On the other hand, DNA tetraploid populations were distributed in a wide area of Hokkaido, and mainland of Japan. The habitats of DNA tetraploid plants were lowland to alpine region. The DNA content measurement with flow cytometry revealed significant differences in the relative DNA contents among DNA tetraploid populations. The relative DNA content within DNA tetraploid populations varied 1.157-fold at maximum, and might correlate with altitude indicating that DNA contents were smaller as altitude increases. The wide area of distribution in various environments of DNA tetraploid plants suggested the adaptability of the tetraploid plants. Although diploid and tetraploid populations were found, no triploid was detected, indicating crossing difficulty between diploid and tetraploid as confirmed by crossing experiment.  相似文献   

13.
Birch has a key role in the Holocene vegetation history of northern Europe and in sub‐arctic climates dwarf birch and tree birch co‐exist. In Iceland, triploid hybrids between diploid Betula nana (dwarf birch) and tetraploid B. pubescens (downy birch) are common and therefore likely to contribute to pollen deposition. Pollen from 22 triploid trees/shrubs from ten woodlands in Iceland was examined and its size and shape compared with pollen from the parental species. The mean diameter of pollen grains from the triploid hybrids was not statistically different from that of B. nana pollen, but was significantly smaller than the mean value of B. pubescens pollen. On the contrary, the size of the vestibulum was similar to that of B. pubescens, which was significantly greater than that of B. nana, and therefore the diameter‐pore depth ratio was lower than the values from either species. The pattern of size distribution within plants indicated that triploid hybrids might have produced two sizes of triporate pollen grains, but the small B. nana size was far more prevalent than the larger B. pubescens size. Several anomalies in pollen morphology were common among the hybrid pollen grains: four or more pores were the most frequent type of abnormality. Characteristics of the pollen of triploid Betula hybrids, especially structural anomalies, may provide a means to reveal periods of interspecific hybridisation in the analysis of sub‐fossil pollen.  相似文献   

14.
DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual dandelions from diploid sexual mother plants using methylation‐sensitive amplified fragment length polymorphism (MS‐AFLP) analysis. In dandelions, triploid apomictic asexuals are produced from diploid sexual mothers that are fertilized by polyploid pollen donors. We asked whether the ploidy level change that accompanies the formation of new asexual lineages triggers methylation changes that contribute to heritable epigenetic variation within novel asexual lineages. Comparison of MS‐AFLP and AFLP fragment inheritance in a diploid × triploid cross revealed de novo methylation variation between triploid F1 individuals. Genetically identical offspring of asexual F1 plants showed modest levels of methylation variation, comparable to background levels as observed among sibs in a long‐established asexual lineage. Thus, the cross between ploidy levels triggered de novo methylation variation between asexual lineages, whereas it did not seem to contribute directly to variation within new asexual lineages. The observed background level of methylation variation suggests that considerable autonomous methylation variation could build up within asexual lineages under natural conditions.  相似文献   

15.
Polyploidization is known to accompany altered DNA methylation in higher plants, which plays an important role in gene expression regulation and maintaining genome stability. While the characteristics of DNA methylation in different polyploid plants are still to be elucidated; here, status of genomic DNA methylation in a series of diploid, triploid, and tetraploid annual herbaceous plants (watermelon and Salvia) and woody perennials (pear, Poplar, and loquat) were explored by methylation-specific amplified polymorphism analysis. The results indicated that levels of DNA methylation in triploid watermelon and Salvia were lower than their diploid parents. In triploid Poplar and pear, higher levels of DNA methylation were detected, and no significant difference was observed between triploid and tetraploid in all tested materials. Further data analysis suggested that about half of the total detected sites underwent changes of DNA methylation patterns in triploid watermelons and Salvia, as well as an obvious trend towards demethylation. However, the changes of DNA methylation patterns in three triploid woody perennials were only 17.54–33.40%. This implied that the characteristics of DNA methylation are significantly different during the polyploidization of different plant species. Furthermore, the results suggested that the level of DNA methylation was nonlinearly related to the ploidy level, and triploid plants displayed more interesting DNA methylation status. The characteristics and possible functions of DNA methylation in different ploidy series are further discussed.  相似文献   

16.
Here we report the first discovery of two viable triploid male Zebra Finches Taeniopygia guttata. We compared the morphology of their sperm with that of normal diploid Zebra Finches and examined eggs resulting from a triploid male and diploid female pairing to investigate whether triploid Zebra Finches can reproduce. The majority (78%) of the triploids' spermatozoa had malformed sperm heads, which were 60% larger, and all examined eggs (= 42) were infertile. Our results tentatively suggest that triploid ZZZ Zebra Finches cannot reproduce, and thus represent a rare evolutionary dead‐end.  相似文献   

17.
Limestone karsts across southern China to southeastern Asia are renowned biodiversity hotspots. The karst are characterized by exposed calcareous rocks, seasonal droughts and thin soils that are deficient in N and P but with high Ca and Mg content. The stressful habitat may result in high biodiversity through mechanisms such as niche differentiation, hybridization, polyploidy and apomixis. The genus Elatostema (Urticaceae) has particularily high species diversity in this area and can be used a model genus to explore the mechanisms of speciation. We conducted cytological studies on 11 species of Elatostema from 12 populations in Guangxi, China. We found five populations to be diploid (2n = 26), and seven triploid populations (2n = 39). We infer x = 13 as the basic chromosome number of Elatostema. The chromosome numbers 2n = 26 and 2n = 39 were both found in populations of E. longistipulum, indicating that this species comprise both diploids and triploids. Both male and female plants of Elatostema were found to be diploid. In contrast, the triploids found were all female plants, and these produce seeds, presumably by apomixis. We found no clear relationship between ploidy level or reproductive pathway and endemism in Elatostema which might be because Elatostema species are wind‐pollinated and independent of biotic pollinators. However, a random sample of 11 karst species revealed that ca 2/3 appeared to be apomictic, suggesting that it is a widespread reproductive strategy of Elatostema in the limestone karsts of Guangxi. Apomixis enables plants to reproduce and disperse from a single individual, allowing ‘hopeful monsters’ adapted to a new habitat to form stable populations.  相似文献   

18.
Analysis of 512 plants derived from 200 populations shows that the widely distributed western North American Chaenactis douglasii species-complex consists of diploids (n = 6), triploids, tetraploids, and hexaploids. Microsporocytes were the source of most of the chromosome counts. About 9% of all plants examined had one or more full-sized extra chromosomes. Multivalents, usually a ring or chain of four chromosomes, were almost entirely restricted to polyploids, where one or more were identified in 38% of the tetraploids and 33% of the hexaploids. With two exceptions, diploids and polyploids were not found in the same population. Frequencies of diploid, triploid, tetraploid, and hexaploid populations were, respectively, 34, 1.5, 55 and 9.5%. With significant exceptions, diploid populations predominate in the Pacific and Rocky Mountain Systems, whereas polyploid ones are most frequent in the intervening plateaus. Ploidy level is correlated with age of substrate, rather than with climate, elevation, vegetation, or soil type. Range, morphology, ploidy level, and meiotic behavior suggest that var. achilleifolia tetraploids and hexaploids are descendents of hybrids between other variants of the complex. The diploid-tetraploid-hexaploid geographic distribution and the age of the substrates where each tends to occur suggest that the complex evolved in late Cenozoic time in response to major climatic and geologic changes that induced migration and hybridization. The hybrid derivatives, stabilized by polyploidy and tolerant of increasing aridity, came to occupy newly available habitats in areas disturbed by volcanic activity and glacial or glacial-related processes.  相似文献   

19.
Hybridization and polyploidy play an important role in animal speciation. European water frogs of the Pelophylax esculentus complex demonstrate unusual genetic phenomena associated with hybridization, clonality and polyploidy which presumably indicate an initial stage of reticulate speciation. The Seversky Donets River drainage in north‐eastern Ukraine is inhabited by both sexes of the diploid and triploid hybrid P. esculentus and only one parental species Pelophylax ridibundus. Based on the presence of various types of hybrids, all populations studied can be divided into three geographical groups: I) P. ridibundusP. esculentus without triploids; II) P. ridibundusP. esculentus without diploid hybrids; and III) P. ridibundusP. esculentus with a mixture of diploids and triploids. A study of gametogenesis revealed that diploid P. esculentus in populations of the first type usually produced haploid gametes of P. ridibundus and a mixture of haploid gametes that carried one or another parental genome (hybrid amphispermy). In populations of the second type, hybrids are derived from crosses of P. ridibundus males with triploid hybrid females producing haploid eggs with a genome of P. lessonae. Therefore, we suggest that clonal genome duplication in these eggs might be the result of suppression of second polar body formation or extra precleavage endoreduplication. In populations of the third type, some diploid females can produce diploid gametes. Fertilization of these eggs with haploid sperm can result in triploid hybrids. Other hybrids here produce haploid gametes with one or another parental genome or their mixture giving rise to new diploid hybrids.  相似文献   

20.
The scarcity of parthenogenetic vertebrates is often attributed to their ‘inferior’ mode of clonal reproduction, which restricts them to self‐reproduce their own genotype lineage and leaves little evolutionary potential with regard to speciation and evolution of sexual reproduction. Here, we show that for some taxa, such uniformity does not hold. Using hybridogenetic water frogs (Pelophylax esculentus) as a model system, we demonstrate that triploid hybrid males from two geographic regions exhibit very different reproductive modes. With an integrative data set combining field studies, crossing experiments, flow cytometry and microsatellite analyses, we found that triploid hybrids from Central Europe are rare, occur in male sex only and form diploid gametes of a single clonal lineage. In contrast, triploid hybrids from north‐western Europe are widespread, occur in both sexes and produce recombined haploid gametes. These differences translate into contrasting reproductive roles between regions. In Central Europe, triploid hybrid males sexually parasitize diploid hybrids and just perpetuate their own genotype – which is the usual pattern in parthenogens. In north‐western Europe, on the other hand, the triploid males are gamete donors for diploid hybrids, thereby stabilizing the mixed 2n‐3n hybrid populations. By demonstrating these contrasting roles in male reproduction, we draw attention to a new significant evolutionary potential for animals with nonsexual reproduction, namely reproductive plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号