首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyanobacterium Nostoc commune (Nostocales) is an isolate from the Schirmacher Oasis Antarctica. The cyanobacterium is psychrotropic in nature; and maintained in laboratory at 25?°C temperature, in unialgal form. Here, we studied the change in protein profile of water soluble proteins from exponentially growing N. commune upon downshift from its optimum growth temperature (25?°C) to a low temperature (5?°C). Experimental set up used to analyze the proteome were- a sudden shift to low temperature (i.e., cold shock), after short- (8?days) and long-term acclimation (7?weeks) to low temperature (5?°C). Cold-shock resulted in an increase in Low molecular weight proteins (LMWPs) with clouding of diffused proteins. Further increase in the duration of incubation period (short- and long-term acclimation) caused dissociation of proteins, indicated by NaCl (50–600mM) induced dissociation of proteins. That is, high molecular weight proteins (HMWPs) dissociated into LMWPs resulting in an increased number of protein bands. This was further confirmed by addition of LMWPs (≤10KDa) resulting in re-association of proteins into HMWPs. Hence, we report that the cold-induced synthesis of LMWPs (≤10kDa) is a strategy adopted by the N. commune to survive at low temperature of Antarctica.  相似文献   

2.
3.
The synthesis of cold shock proteins (csps) in response to cold shock, and of cold acclimation proteins (caps) in response to continuous growth at low temperature, in the psychrophileAquaspirillum arcticum was investigated. With two-dimensional gel electrophoresis and computing scanning laser densitometry, cold shock treatments (10° to 0°C, 5° to 0°C, and 10° to 5°C) induced a total of 14 csps, 6 of which were induced by all three cold shocks. The production of caps in response to continuous growth at 0°C was also found. Five of the 8 caps produced were also csps which suggests that these proteins may share a common involvement in cold adaptation.  相似文献   

4.
We found that a cold acclimation protein from an ice-nucleating bacterium, Patoea ananas KUIN-3, has refolding activity on frozen denatured protein. Based on a SDS-PAGE analysis, we confirmed that the cold shock-treated cells of strain KUIN-3 could produce some cold acclimation proteins that inhibit their syntheses by the addition of chloramphenicol during the cold acclimation. Among such proteins, Hsc25 had refolding activity similar to GroELS. Hsc25 was purified to apparent homogeneity by (NH4)2SO4 precipitation and some chromatographies. The purified Hsc25 was composed of 8 subunits of 25,000 each with a molecular mass of 200,000 and had refolding activity against denatured enzymes, which were denatured by heat-treatment at 100°C, cryopreservation at -20°C, or guanidine hydrochloride, in a manner similar to GroELS. The N-terminal sequence of Hsc25 was Met-Arg-Ala-Ser-Thr-Tyr-His-Ala-Ala-Arg-. Furthermore, Hsc25 had a high level of activity at low temperature (12°C). Also, the dissociation constants, KD (M) as the binding specificity for enolase, mutarotase, isocitrate dehydrogenase, and lactate dehydrogenase were 1.82×10-10, 4.35×10-9, 8.98×10-12, and 3.05×10-11, respectively. The affinity of Hsc25 for frozen danatured enzymes was higher than the affinity for heat denatured enzymes when compared with the affinity of GroEL. These results are the first report on the characterization of a purified chaperon that was induced by cold acclimation.  相似文献   

5.
On the basis of acquired thermotolerance and cryotolerance, the optimal heat shock and cold shock temperatures have been determined for Deinococcus radiodurans. A heat shock at 42°C maximized survival at the lethal temperature of 52°C and a cold shock at 20°C maximized survival after repeated freeze-thawing. Enhanced survival from heat shock was found to be strongly dependent on growth stage, with its greatest effect shortly after phase. Increased synthesis of a total of 67 proteins during heat shock and 42 proteins during cold shock were observed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and autoradiography. Eight of the most highly induced heat shock proteins shown by 2D PAGE were identified by MALDI-MS as Hsp20, GroEL, DnaK, SodA, Csp, Protease I and two proteins of unknown function.  相似文献   

6.
Acclimation to environmental change can impose both costs and benefits to organisms. In this study we explored to what extent locomotor behaviour of Drosophila melanogaster is influenced by developmental temperature and adult temperature in both the laboratory and the field. Following development at 15, 25, or 31 °C, adult flies were tested for locomotor activity at all developmental temperatures in the laboratory before and after exposure to a cold shock and in the field for their ability to locate resources after a cold shock. Both test (15, 25, and 31 °C) and developmental temperatures strongly affected locomoter activity, with flies developed at 25 °C having the highest activity at all three test temperatures before the cold shock. After the cold shock flies developed at 15 °C had higher activity compared with flies developed at 25 and 31 °C when tested at 15 and 25 °C, and flies developed at 25 °C had the highest activity when tested at 31 °C. Furthermore, flies developed at 31 °C showed longer recovery times following the cold shock at test temperatures of 15 and 25 °C. However, flies acclimated at 15 °C during development did not recover faster at 15 and 25 °C compared with flies developed at 25 °C. There were no significant correlations between recovery time and locomotor activity at any of the test temperatures. Flies developed at 15 °C and exposed to a cold shock before release in the field were much more successful in locating a resource at low field temperatures compared with flies developed at 25 and 31 °C. Our results provide support for both the beneficial acclimation hypothesis and the optimal developmental temperature hypothesis, but the results are highly context dependent and change with the temperature experienced by the individual during its lifetime.  相似文献   

7.
In Manitoba, Canada, wild lake sturgeon (Acipenser fulvescens) populations exist along a latitudinal gradient and are reared in hatcheries to bolster threatened populations. We reared two populations of lake sturgeon, one from each of the northern and southern ends of Manitoba and examined the effects of typical hatchery temperatures (16°C) as well as 60-day acclimation to elevated rearing temperatures (20°C) on mortality, growth and condition throughout early development. Additionally, we examined the cold shock response, which may be induced during stocking, through the hepatic mRNA expression of genes involved in the response to cold stress and homeoviscous adaptation (HSP70, HSP90a, HSP90b, CIRP and SCD). Sturgeon were sampled after 1 day and 1 week following stocking into temperatures of 8, 6 and 4°C in a controlled laboratory environment. The southern population showed lower condition and higher mortality during early life than the northern population while increased rearing temperature impacted the growth and condition of developing northern sturgeon. During the cold shock, HSP70 and HSP90a mRNA expression increased in all sturgeon treatments as stocking temperature decreased, with higher expression observed in the southern population. Expression of HSP90b, CIRP and SCD increased as stocking temperature decreased in northern sturgeon with early acclimation to 20°C. Correlation analyses indicated the strongest molecular relationships were in the expression of HSP90b, CIRP and SCD, across all treatments, with a correlation between HSP90b and body condition in northern sturgeon with early acclimation to 20°C. Together, these observations highlight the importance of population and rearing environment throughout early development and on later cellular responses induced by cold stocking temperatures.  相似文献   

8.
9.
Antifreeze activity is induced by cold temperatures in winter rye (Secale cereale) leaves. The activity arises from six antifreeze proteins that accumulate in the apoplast of winter rye leaves during cold acclimation. The individual antifreeze proteins are similar to pathogenesis-related proteins, including glucanases, chitinases, and thaumatin-like proteins. The objective of this study was to study the regulation of antifreeze activity in response to ethylene and salicyclic acid, which are known regulators of pathogenesis-related proteins induced by pathogens. Nonacclimated plants treated with salicylic acid accumulated apoplastic proteins with no antifreeze activity. In contrast, when nonacclimated plants were exposed to ethylene, both antifreeze activity and the concentration of apoplastic protein increased in rye leaves. Immunoblotting revealed that six of the seven accumulated apoplastic proteins consisted of two glucanases, two chitinases, and two thaumatin-like proteins. The ethylene-releasing agent ethephon and the ethylene precursor 1-aminocyclopropane-1-carboxylate also induced high levels of antifreeze activity at 20 degrees C, and this effect could be blocked by the ethylene inhibitor AgNO(3). When intact rye plants were exposed to 5 degrees C, endogenous ethylene production and antifreeze activity were detected within 12 and 48 h of exposure to cold, respectively. Rye plants exposed to drought produced both ethylene and antifreeze activity within 24 h. We conclude that ethylene is involved in regulating antifreeze activity in winter rye in response to cold and drought.  相似文献   

10.
In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol.  相似文献   

11.
Diapausing pharate first instars of the gypsy moth, Lymantria dispar, respond to high temperature (37–41°C) by suppressing normal protein synthesis and synthesizing a set of seven heat shock proteins with Mrs of 90,000, 75,000, 73,000, 60,000, 42,000, 29,000, and 22,000 as determined by SDS-PAGE. During recovery at 25°C from heat shock, synthesis of the heat shock proteins gradually decreases over a period of 6 h, while normal protein synthesis is restored. A subset of these same heat shock proteins is also expressed during recovery at 4°C or 25°C from brief exposures to low temperature (-10 to 20°C), and its expression is more intense with increased severity of cold exposure. During recovery at 4°C after 24 h at ?20°C, both 90,000 and 75,000 Mr heat shock proteins are expressed for more than 96 h. While normal protein synthesis is suppressed during heat shock and recovery from heat shock, normal protein synthesis coincides with synthesis of the heat shock proteins during recovery from low temperatures, thus implying that expression of the heat shock proteins is not invariably linked to suppression of normal protein synthesis. Western transfer, using a monoclonal antibody that recognizes the inducible form of the human 70,000 Mr heat shock protein, demonstrates that immunologically related proteins in the gypsy moth are expressed at 4°C and during recovery from cold and heat shock.  相似文献   

12.
We investigated the heat tolerance of adults of three replicated lines of Drosophila melanogaster that have been evolving independently by laboratory natural selection for 15 yr at “nonextreme” temperatures (18°C, 25°C, or 28°C). These lines are known to have diverged in body size and in the thermal dependence of several life-history traits. Here we show that they differ also in tolerance of extreme high temperature as well as in induced thermotolerance (“heat hardening”). For example, the 28°C flies had the highest probability of surviving a heat shock, whereas the 18°C flies generally had the lowest probability. A short heat pretreatment increased the heat tolerance of the 18°C and 25°C lines, and the threshold temperature necessary to induce thermotolerance was lower for the 18°C line than for the 25°C line. However, neither heat pretreatment nor acclimation to different temperatures influenced heat tolerance of the 28°C line, suggesting the loss of capacity for induced thermotolerance and for acclimation. Thus, patterns of tolerance of extreme heat, of acclimation, and of induced thermotolerance have evolved as correlated responses to natural selection at nonextreme temperatures. A genetic analysis of heat tolerance of a representative replicate population each from the 18°C and 28°C lines indicates that chromosomes 1, 2, and 3 have significant effects on heat tolerance. However, the cytoplasm has little influence, contrary to findings in an earlier study of other stocks that had been evolving for 7 yr at 14°C versus 25°C. Because genes for heat stress proteins (hsps) are concentrated on chromosome 3, the potential role of hsps in the heat tolerance and of induced thermotolerance in these naturally selected lines is currently unclear. In any case, species of Drosophila possess considerable genetic variation in thermal sensitivity and thus have the potential to evolve rapidly in response to climate change; but predicting that response may be difficult.  相似文献   

13.
Streptococcus thermophilus is widely used in food fermentations; it commonly suffers diverse stress challenges during manufacturing. This study investigated the cold shock response of S. thermophilus when the cell culture temperature shifted from 42°C to 15°C or 20°C. The growth of cells was affected more drastically after cold shock at 15°C than at 20°C. The generation time was increased by a factor of 19 when the temperature was lowered from 42° to 20°C, and by a factor of 72 after a cold shock at 15°C. The two-dimensional electrophoretic protein patterns of S. thermophilus under cold shock conditions were compared with the reference protein pattern when cells were grown at optimal temperature. Two proteins of 21.5 and 7.5 kDa synthesized in response to cold shock were characterized. N-terminal sequencing and sequence homology searches have shown that the 7.5-kDa protein belonged to the family of the major cold shock proteins, while no homology was found for the new cold shock protein of 21.5 kDa. Received: 4 June 1999 / Accepted: 6 July 1999  相似文献   

14.
The relationship between total soluble seminal root proteins induced at cold acclimation and freezing tolerance in tetraploid wild wheat Aegilops L. (Ae. biuncialis, Ae. cylindrica) and cultivated wheat Triticum turgitum L. (Firat-93, Harran-95) was investigated. Cold acclimation was performed at 0 °C for 7 days. Freezing tolerance was determined with survived roots after freezing treatments at −5 and/or −7 °C for 3, 6, 12 and 24 h. At −5°C, all tetraploid genotypes showed over 60% tolerance for 3 h. This effect was also present in wild wheat for 6 h, but was decreased in cultivated wheat to 30–35% tolerance for 6 h. Only Ae. biuncialis was able to show 52% tolerance just for 3 h freezing period at −7 °C. However, all the genotypes were not survived at −7 °C, for 6, 12 and 24 h. Cold acclimation induced greater amounts of new soluble seminal root proteins in tolerant Ae. biuncialis (29–104 kDa, pI 5.4–7.4) than in sensitive Harran-95 (29–66 kDa, pI 6.1–8.3). Synthesis and accumulation of these proteins may be related to degree of freezing tolerance of these genotypes.  相似文献   

15.
This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately −20°C, all were killed by a direct 1 h exposure to −16°C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4°C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1‐h exposure to 0°C improved their subsequent tolerance of −14 and −16°C. In response to heat stress, fewer than 20% of the bugs survived a 1‐h exposure to 46°C, and nearly all were killed at 48°C. Dehydration, heat acclimation at 30°C for 2 weeks and rapid heat hardening at 37°C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses.  相似文献   

16.
The response to heat stress in six yeast species isolated from Antarctica was examined. The yeast were classified into two groups: one psychrophilic, with a maximum growth temperature of 20°C, and the other psychrotrophic, capable of growth at temperatures above 20°C. In addition to species-specific heat shock protein (hsp) profiles, a heat shock (15°C–25°C for 3 h) induced the synthesis of a 110-kDa protein common to the psychrophiles, Mrakia stokesii, M. frigida, and M. gelida, but not evident in Leucosporidium antarcticum. Immunoblot analyses revealed heat shock inducible proteins (hsps) corresponding to hsps 70 and 90. Interestingly, no proteins corresponding to hsps 60 and 104 were observed in any of the psychrophilic species examined. In the psychrotrophic yeast, Leucosporidium fellii and L. scottii, in addition to the presence of hsps 70 and 90, a protein corresponding to hsp 104 was observed. In psychrotrophic yeast, as observed in psychrophilic yeast, the absence of a protein corresponding to hsp 60 was noted. Relatively high endogenous levels of trehalose which were elevated upon a heat shock were exhibited by all species. A 10 Celsius degree increase in temperature above the growth temperature (15°C) of psychrophiles and psychrotrophs was optimal for heat shock induced thermotolerance. On the other hand, in psychrotrophic yeast grown at 25°C, only a 5 Celsius degree increase in temperature was necessary for heat shock induced thermotolerance. Induced thermotolerance in all yeast species was coincident with hsp synthesis and trehalose accumulation. It was concluded that psychrophilic and psychrotrophic yeast, although exhibiting a stress response similar to mesophilic Saccharomyces cerevisiae, nevertheless had distinctive stress protein profiles. Received: August 7, 1997 / Accepted: October 22, 1997  相似文献   

17.
18.
Abstract. Comparisons were made between the changes in mRNA levels induced by low night temperatures in the cold–sensitive tomato and two altitudinal ecotypes of the wild species L. hirsutum. Changes in mRNA levels were detected by resolving in vitro translation products of poly(A)+ RNA by 2-D PAGE. The treatment was applied by first growing plants in a thermoperiod of 25/18°C and then switching to 25/6°C. All tomatoes displayed a diurnal cycling in which a set of mRNAs accumulated at the end of the 18°C nights, whereas another accumulated at the end of the 25°C days. The accumulation of night specific mRNAs was inhibited by 6°C nights in the cold sensitive tomatoes while that of the tolerant one was only marginally affected. All tomatoes showed a similar reduction in the apparent turnover rate of the day specific mRNAs during the 6°C nights. Finally, low night temperatures induced the accumulation of six to eight mRNAs in all genotypes. This number increased by 15 in L. esculentum after the seventh night and are likely involved in stress response rather than acclimation/tolerance. The tomato is proposed as a genetic model to discriminate genes involved in acclimation/tolerance from those involved in stress response.  相似文献   

19.
The psychrotrophic bacterium Pseudomonas fragi was subjected to cold shocks from 30 or 20 to 5 degrees C. The downshifts were followed by a lag phase before growth resumed at a characteristic 5 degrees C growth rate. The analysis of protein patterns by two-dimentional gel electrophoresis revealed overexpression of 25 or 17 proteins and underexpression of 12 proteins following the 30- or 20-to-5 degrees C shift, respectively. The two downshifts shared similar variations of synthesis of 20 proteins. The kinetic analysis distinguished the induced proteins into cold shock proteins (Csps), which were rapidly but transiently overexpressed, and cold acclimation proteins (Caps), which were more or less rapidly induced but still overexpressed several hours after the downshifts. Among the cold-induced proteins, four low-molecular-mass proteins, two of them previously characterized as Caps (CapA and CapB), and heat acclimation proteins (Haps) as well as heat shock proteins (Hsps) for the two others (TapA and TapB) displayed higher levels of induction. Partial amino acid sequences, obtained by microsequencing, were used to design primers to amplify by PCR the four genes and then determine their nucleotide sequences. A BamHI-EcoRI restriction fragment of 1.9 kb, containing the complete coding sequence for capB, was cloned and sequenced. The four peptides belong to the family of small nucleic acid-binding proteins as CspA, the major Escherichia coli Csp. They are likely to play a major role in the adaptative response of P. fragi to environmental temperature changes.  相似文献   

20.
Biodegradation of Ethylene Glycol by a Salt-Requiring Bacterium   总被引:7,自引:4,他引:3       下载免费PDF全文
A gram-negative nonmotile rod which was capable of using 1,2-(14)C-ethylene glycol as a sole carbon source for growth was isolated from a brine pond, Great Salt Lake, Utah. The bacterium (ATCC 27042) required at least 0.85% NaCl for growth and, although the chloride ion was replaceable by sulfate ion, the sodium ion was not replaceable by potassium ion. The maximal concentration of salt tolerated for growth was approximately 12%. The bacterium was oxidase-negative when N,N-dimethyl-p-phenylenediamine was used and weakly positive when N,N,N',N'-tetramethyl-p-phenylenediamine was used. It grows on many sugars but does not ferment them, it does not have an exogenous vitamin requirement, and it possesses a guanine plus cytosine ratio of 64.3%. Incorporation of ethylene glycol carbon into cell and respired CO(2) was quantitated by use of radioactive ethylene glycol and a force-aerated fermentor. Glucose suppressed ethylene glycol metabolism. Cells grown on ethylene and propylene glycol respired ethylene glycol in a Warburg respirometer more rapidly than cells grown on glucose. Spectrophotometric evidence was obtained for oxidation of glycolate to glyoxylate by a dialyzed cell extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号