首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem’s CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 μmol CO2 m−2 s−1 [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20°C soil temperature, Re20, was −10.9 μmol CO2 m−2 s−1 (CV, 27.3). Re20 was positively correlated with vegetation biomass. GPPmax was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.  相似文献   

2.
Biometric based carbon flux measurements were conducted over 5 years (1999–2003) in a temperate deciduous broad-leaved forest of the AsiaFlux network to estimate net ecosystem production (NEP). Biometric based NEP, as measured by the balance between net primary production (including NPP of canopy trees and of forest floor dwarf bamboo) and heterotrophic respiration (RH), clarified the contribution of various biological processes to the ecosystem carbon budget, and also showed where and how the forest is storing C. The mean NPP of the trees was 5.4 ± 1.07 t C ha−1 y−1, including biomass increment (0.3 ± 0.82 t C ha−1 y−1), tree mortality (1.0 ± 0.61 t C ha−1 y−1), aboveground detritus production (2.3 ± 0.39 t C ha−1 y−1) and belowground fine root production (1.8 ± 0.31 t C ha−1 y−1). Annual biomass increment was rather small because of high tree mortality during the 5 years. Total NPP at the site was 6.5 ± 1.07 t C ha−1 y−1, including the NPP of the forest floor community (1.1 ± 0.06 t C ha−1 y−1). The soil surface CO2 efflux (RS) was averaged across the 5 years of record using open-flow chambers. The mean estimated annual RS amounted to 7.1 ± 0.44 t C ha−1, and the decomposition of soil organic matter (SOM) was estimated at 3.9 ± 0.24 t C ha−1. RH was estimated at 4.4 ± 0.32 t C ha−1 y−1, which included decomposition of coarse woody debris. Biometric NEP in the forest was estimated at 2.1 ± 1.15 t C ha−1 y−1, which agreed well with the eddy-covariance based net ecosystem exchange (NEE). The contribution of woody increment (Δbiomass + mortality) of the canopy trees to NEP was rather small, and thus the SOM pool played an important role in carbon storage in the temperate forest. These results suggested that the dense forest floor of dwarf bamboo might have a critical role in soil carbon sequestration in temperate East Asian deciduous forests.  相似文献   

3.
Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for 2 years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were co-equal. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2–3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study, with annual GPP being similar (488 and 519 g O2 m−2 y−1 or 183 and 195 g C m−2 y−1) but annual ER being higher in 2004 than 2005 (−1,645 vs. −1,292 g O2 m−2 y−1 or −617 and −485 g C m−2 y−1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of these important ecosystems.  相似文献   

4.
Old growth forest soils are large C reservoirs, but the impacts of tree-fall gaps on soil C in these forests are not well understood. The effects of forest gaps on soil C dynamics in old growth northern hardwood–hemlock forests in the upper Great Lakes region, USA, were assessed from measurements of litter and soil C stocks, surface C efflux, and soil microbial indices over two consecutive growing seasons. Forest floor C was significantly less in gaps (19.0 Mg C ha−1) compared to gap-edges (39.5 Mg C ha−1) and the closed forest (38.0 Mg C ha−1). Labile soil C (coarse particulate organic matter, cPOM) was significantly less in gaps and edges (11.1 and 11.2 Mg C ha−1) compared to forest plots (15.3 Mg C ha−1). In situ surface C efflux was significantly greater in gaps (12.0 Mg C ha−1 y−1) compared to edges and the closed forest (9.2 and 8.9 Mg C ha−1 y−1). Microbial biomass N (MBN) was significantly greater in edges (0.14 Mg N ha−1) than in the contiguous forest (0.09 Mg N ha−1). The metabolic quotient (qCO2) was significantly greater in the forest (0.0031 mg CO2 h−1 g−1/mg MBC g−1) relative to gaps or edges (0.0014 mg CO2 h−1 g−1/mg MBC g−1). A case is made for gaps as alleviators of old growth forest soil C saturation. Relative to the undisturbed closed forest, gaps have significantly less labile C, significantly greater in situ surface C efflux, and significantly lower decreased qCO2 values.  相似文献   

5.
To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q10) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q10 decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m−2. Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.  相似文献   

6.
Seasonal changes in gross primary production (GPP) and net ecosystem production (NEP) in temperate deciduous forests are mostly driven by environmental conditions and the phenology of leaf demography. This study addresses another factor, temporal changes in leaf properties, i.e., leaf aging from emergence to senescence. A process-based model was used to link the ecosystem-scale carbon budget with leaf-level properties on the basis of field observation and scaling procedures; temporal variations in leaf thickness (leaf mass per area, LMA), photosynthetic rubisco (Vcmax) and electron-transport (Jmax) capacity, and dark respiration (Rd) were empirically parameterized. The model was applied to a cool-temperate deciduous broad-leaved forest at Takayama, in central Japan, and validated with data of net ecosystem CO2 exchange (NEE=–NEP) measured using the eddy-covariance method. NEP of the Takayama site varied seasonally from 3 g C m–2 day–1 net source in late winter to 5 g C m–2 day–1 net sink in early to mid-summer. A sensitivity experiment showed that removing the leaf-aging effect changed the seasonal CO2 exchange pattern, and led to overestimation of annual GPP by 6% and annual NEP by 38%. We found that seasonal variation in Vcmax affected the seasonal pattern and annual budget of CO2 exchange most strongly; LMA and Rd had moderate influences. The rapid change in Vcmax and Rd during leaf emergence and senescence was important in evaluating GPP and NEP of the temperate deciduous forest.  相似文献   

7.
Soil mineral weathering may serve as a sink for atmospheric carbon dioxide (CO2). Increased weathering of soil minerals induced by elevated CO2 concentration has been reported previously in temperate areas. However, this has not been well documented for the tropics and subtropics. We used model forest ecosystems in open-top chambers to study the effects of CO2 enrichment alone and together with nitrogen (N) addition on inorganic carbon (C) losses in the leachates. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in increased annual inorganic C export through leaching below the 70 cm soil profile. Compared to the control without any CO2 and N treatments, net biocarbonate C (HCO3 -C) loss increased by 42%, 74%, and 81% in the high CO2 concentration treatment in 2006, 2007, and 2008, respectively. Increased inorganic C export following the exposure to the elevated CO2 was related to both increased inorganic C concentrations in the leaching water and the greater amount of leaching water. Net annual inorganic C (HCO3 -C and carbonate C: CO3 2−-C) loss via the leaching water in the high CO2 concentration chambers reached 48.0, 49.5, and 114.0 kg ha−1 y−1 in 2006, 2007, and 2008, respectively, compared with 33.8, 28.4, and 62.8 kg ha−1 y−1 in the control chambers in the corresponding years. The N addition showed a negative effect on the mineral weathering. The decreased inorganic C concentration in the leaching water and the decreased leaching water amount induced by the high N treatment were the results of the adverse effect. Our results suggest that tropical forest soil systems may be able to compensate for a small part of the atmospheric CO2 increase through the accelerated processing of CO2 into HCO3 -C during soil mineral weathering, which might be transported in part into ground water or oceans on geological timescales.  相似文献   

8.
Fluxes of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) between soils and the atmosphere were measured monthly for one year in a 77-year-old temperate hardwood forest following a simulated hurricane blowdown. Emissions of CO2 and uptake of CH4 for the control plot were 4.92 MT C ha−1 y−1 and 3.87 kg C ha−1 y−1, respectively, and were not significantly different from the blowdown plot. Annual N2O emissions in the control plot (0.23 kg N ha−1 y−1) were low and were reduced 78% by the blowdown. Net N mineralization was not affected by the blowdown. Net nitrification was greater in the blowdown than in the control, however, the absolute rate of net nitrification, as well as the proportion of mineralized N that was nitrified, remained low. Fluxes of CO2 and CH4 were correlated positively to soil temperature, and CH, uptake showed a negative relationship to soil moisture. Substantial resprouting and leafing out of downed or damaged trees, and increased growth of understory vegetation following the blowdown, were probably responsible for the relatively small differences in soil temperature, moisture, N availability, and net N mineralization and net nitrification between the control and blowdown plots, thus resulting in no change in CO2 or CH4 fluxes, and no increase in N2O emissions.  相似文献   

9.
Trees allocate a large portion of gross primary production belowground for the production and maintenance of roots and mycorrhizae. The difficulty of directly measuring total belowground carbon allocation (TBCA) has limited our understanding of belowground carbon (C) cycling and the factors that control this important flux. We measured TBCA over 4 years using a conservation of mass, C balance approach in replicate stands of fast growing Eucalyptus saligna Smith with different nutrition management and tree density treatments. We measured TBCA as surface carbon dioxide (CO2) efflux (“soil” respiration) minus C inputs from aboveground litter plus the change in C stored in roots, litter, and soil. We evaluated this C balance approach to measuring TBCA by examining (a) the variance in TBCA across replicate plots; (b) cumulative error associated with summing components to arrive at our estimates of TBCA; (c) potential sources of error in the techniques and assumptions; (d) the magnitude of changes in C stored in soil, litter, and roots compared to TBCA; and (e) the sensitivity of our measures of TBCA to differences in nutrient availability, tree density, and forest age. The C balance method gave precise estimates of TBCA and reflected differences in belowground allocation expected with manipulations of fertility and tree density. Across treatments, TBCA averaged 1.88 kg C m−2 y−1 and was 18% higher in plots planted with 104 trees/ha compared to plots planted with 1111 trees/ha. TBCA was 12% lower (but not significantly so) in fertilized plots. For all treatments, TBCA declined linearly with stand age. The coefficient of variation (CV) for TBCA for replicate plots averaged 17%. Averaged across treatments and years, annual changes in C stored in soil, the litter layer, and coarse roots (−0.01, 0.06, and 0.21 kg C m−2 y−1, respectively) were small compared with surface CO2 efflux (2.03 kg C m−2 y−1), aboveground litterfall (0.42 kg C m−2 y−1), and our estimated TBCA (1.88 kg C m−2 y−1). Based on studies from similar sites, estimates of losses of C through leaching, erosion, or storage of C in deep soil were less than 1% of annual TBCA. Received 6 March 2001; accepted 7 January 2002.  相似文献   

10.
The response of decomposition of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low soil N availability); (2) litter decomposition is stimulated by N addition in rehabilitated and disturbed forests due to their low soil N availability; (3) N addition has little effect on litter decomposition in mature forest due to its high soil N availability. The litterbag method (a total of 2880 litterbags) and N treatments: Control-no N addition, Low-N: −5 g N m−2 y−1, Medium-N: −10 g N m−2 y−1, and High-N: −15 g N m−2 y−1, were employed to evaluate decomposition. Results indicated that mature forest, which has likely been N saturated due to both long-term high N deposition in the region and the age of the ecosystem, had the highest litter decomposition rate, and exhibited no significant positive and even some negative response to nitrogen additions. However, both disturbed and rehabilitated forests, which are still N limited due to previous land use history, exhibited slower litter decomposition rates with significant positive effects from nitrogen additions. These results suggest that litter decomposition and its responses to N addition in subtropical forests of China vary depending on the nitrogen status of the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号