首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the possible involvement of plant hormones in the synthesis of stress proteins in tomato upon inoculation with Cladosporium fulvum, we investigated the induction of mRNAs encoding PR proteins and ethylene biosynthesis enzymes by ethephon, 2,6-dichloroisonicotinic acid (INA) and salicylic acid (SA) by northern blot analysis. Ethephon slightly induced some but not all mRNAs encoding intra- and extracellular PR proteins. INA induced all PR protein mRNAs analysed, except for intracellular chitinase and extracellular PR-4. SA induced all PR protein mRNAs analyzed, except for intracellular chitinase and osmotin. None of the inducers affected the expression of ACC synthase mRNA, whereas all three induced ethylene-forming enzyme (EFE) mRNA.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - HR hypersensitive response - INA 2,6-dichloroisonicotinic acid - PR pathogenesis-related - SA salicylic acid - SAR systemic acquired resistance  相似文献   

2.
Salicylic acid: A new inhibitor of ethylene biosynthesis   总被引:17,自引:0,他引:17  
Salicylic acid and acetylsalicylic acid at concentrations of 10–6M to 10–4M effectively inhibit ethylene production by pear cell suspension cultures. Results suggest these acids act by blocking the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene.Abbreviations ACC 1 aminocyclopropane-1-carboxylic acid - ASA acetylsalicylic acid - 2,4-D 2,4-dinitrophenoxyacetic acid - DMSO dimethyl sulfoxide - IAA indole acetic acid - SA salicylic acid  相似文献   

3.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

4.
The role of ethylene in the formation of adventitious roots in vitro was studied in tomato (Lycopersicon esculentum Mill. cv. UC 105) cotyledons and lavandin (Lavandula officinalis Chaix × Lavandula latifolia microshoots. Both systems were able to form roots on hormone-free medium evolving low amounts of ethylene. The addition of 20–50 M indole-3-acetic acid (IAA) inhibited root formation in tomato cotyledons while increasing ethylene production. Naphthaleneacetic acid (NAA, 3 M) stimulated root number in lavandin explants and induced a transient rise in ethylene evolution. Enhanced ethylene levels via the endogenous precursors 1-aminocyclopropane-1-carboxylic acid (ACC, 25–50 M) drastically impaired root regeneration and growth in tomato. In lavandin, 10 M ACC stimulated ethylene production and significantly inhibited the rooting percentage and root growth. Conversely, ACC enhanced the root number in the presence of NAA only. Severe inhibition of rooting was also caused by ethylene reduction via biosynthetic inhibitors, aminoethoxyvinylglycine (AVG, 5–10 M) in tomato, and salicylic acid (SA, 100 M) in lavandin. A strict requirement of endogenous ethylene for adventitious root induction and growth is thus suggested.Abbreviations LS Linsmaier and Skoog medium - BA N6-benzyladenine - NAA 1-naphthaleneacetic acid - IAA Indole-3-acetic acid - AVG Aminoethoxyvinylglycine - SA Salicylic acid - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

5.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

6.
Endogenous ethylene production of tobacco leaves was similar in light and in darkness. However, the rate of conversion of exogenously applied l-aminocyclopropane-l-carboxylic acid (ACC) to ethylene was reversibly inhibited by light. Virus-stimulated ethylene production, during the hypersensitive reaction of tobacco leaves to tobacco mosaic virus, was likewise inhibited by light. Under such circumstances ethylene production is limited at the level of the conversion of ACC to ethylene. Inhibition of the increase in ACC-stimulated ethylene production by cycloheximide and 2-(4-methyl-2,6-dinitroanilino)-N-methyl-propionamide after shifting leaf discs from light to darkness indicated that de novo protein synthsis was involved. Regulation of ACC-dependent ethylene production by reversible oxidation/reduction of essential SH groups, as suggested by Gepstein and Thimann (1980, Planta 149, 196–199) could be excluded. Instead, regulation of the ACC-converting enzyme at the level of both synthesis/degradation and activation/inactivation is suggested. Phytochrome was not involved in light inhibition, but low intensities of either red or blue light decreased the rate of ACC conversion. Dichlorophenyldimethylurea counteracted the inhibitory effect of light, indicating that (part of) the photosynthetic system is involved in the light inhibition. The ethylene production of Pharbitis cotyledons grown in darkness or light, either in the presence of absence of the inhibitor of carotenoid synthesis, SAN 9789 (norflurazon), supported this view.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - DCMU dichlorophenyldimethylurea - MDMP 2-(4-methyl-2,6-dinitroanilino)-N-methyl-propionamide - SAM S-adenosylmethionine - SH groups sulfhydryl groups - TCA trichloroacetic acid - TMV tobacco mosaic virus  相似文献   

7.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

8.
Endogenous levels of ethylene appeared to he suhoptimal for somatic embryogenesis in a suspension culture of carrot. Low concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC). 2-chloroethylphosphonic acid (ethephon) and elhylene stimulated embryogenesis whereas higher concentrations were inhibitory. The stimulation by ACC was through its conversion to ethylene. whereas the inhibition by ACC was not. Low concentrations of AgNO3. an inhibitor of ethylene action, inhibited embryo-genesis but stimulated ethylene production. Aminoethoxyvinylglycine (AVG) and aminooxyacetic acid (AOA). commonly used inhibitors of ACC synthase. inhibited both embryogenesis and ethylene production. However, the inhibition of embryogenesis was not related to the inhibition ote ethylene production. Very low concentrations of AVG stimulated embryo production in a way unrelated to its effect on ethylene production. Salicylic acid and CoCl2. inhibitors of ACC oxidase in other systems, inhibited embryogenesis but. again, in way(s) unrelated to their inhibition of ethylene production. In fact, low concentrations of salicylic acid stimulated rather than inhibited ethylene production. The results show that in suspension-cultured cells, caution is warranted in the interpretation of results obtained with agents presumed to inhibit ethylene biosynthesis. The stimulation of somatic embryogenesis by ethylene unequivocally shows that the inhibition of embryo development by 2.4-dichlorophenoxyacetic acid (2.4-D) and other auxins cannot be through their stimulatory effect on ethylene production.  相似文献   

9.
Yu Liu  Ling-yuan Su  Shang Fa Yang 《Planta》1984,161(5):439-443
1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be converted to ethylene and conjugated into N-malonyl-ACC in plant tissues. When -amino[1-14C]isobutyric acid (AIB), a structural analog of ACC, was administered to mungbean (Vigna radiata L.) hypocotyl segments, it was metabolized to 14CO2 and conjugated to N-malonyl-AIB (MAIB). -Aminoisobutyric acid inhibited the conversion of ACC to ethylene and also inhibited, to a lesser extent, N-malonylation of ACC and d-amino acids. Although the malonylation of AIB was strongly inhibited by ACC as well as by d-amino acids, the metabolism of AIB to CO2 was inhibited only by ACC but not by d-amino acids. Inhibitors of ACC conversion to ethylene such as anaerobiosis, 2,4-dinitrophenol and Co2+, similarly inhibited the conversion of AIB to CO2. These results indicate that the malonyalation of AIB to MAIB is intimately related to the malonylation of ACC and d-amino acids, whereas oxidative decarboxylation of AIB is related to the oxidative degradation of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -aminoisobutyric acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid - MAIB -(malonylamino)-isobutyric acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

10.
Effects of the ethylene biosynthesis inhibitors salicylic acid (SA) and aminoethoxyvinylglycine (AVG) on germination of Medicago sativa L. somatic embryos and their conversion to seedlings in relation to carbohydrate content and α-amylase activity were studied. Both SA, an inhibitor of ACC oxidase, and AVG, an inhibitor of ACC synthase, when present in the regeneration medium (0.1 and 1 μM) were found to drastically reduce the embryo germination rate. In addition, SA and AVG were found to almost completely or completely, respectively, arrest the process of embryo conversion to seedlings. The inhibitory effects of SA and AVG on germination and conversion may indicate that the processes required endogenous ethylene. AVG and SA clearly slowed down starch disappearance during the 48-h imbibition in the regeneration medium prior to radicle elongation, which was correlated with inhibition of the activity of α-amylase, an enzyme responsible for starch hydrolysis. It is probable that ethylene may activate α-amylase in the germinating alfalfa somatic embryos. In contrast, the disappearance of soluble sugars in the embryos in the presence of the inhibitors tested was accelerated. The disappearance of soluble sugars (to null or almost null) in embryos was faster in the presence of SA in the regeneration medium after 24 and 48 h compared to the disappearance rate with AVG present in the medium. Only glucose was present after a 48-h incubation in the regeneration medium in the presence of the two ethylene biosynthesis inhibitors, in contrast to the control embryos in which glucose was not detected.  相似文献   

11.
Buffered solutions are used commonly to introduce chemical inhibitors and promoters of ethylene synthesis into plant tissues. Vacuum infiltration of preclimacteric muskmelon (Cucumis melo L.) fruit tissue with a buffer (50 mM MES, pH 6.1) immediately after excision inhibited the wound-induced increase in ethylene production, but it did not suppress the accumulation of 1-aminocyclopropane-l-carboxylic acid (ACC) during the 48 h following injury. The inhibition of ethylene production by infiltration was not reversed by treatment with ACC. If the injured tissue was allowed to age for 3 h before treatment, wound-induced ethylene production in tissue samples was not inhibited by vacuum infiltration with aqueous buffer. The results indicate that infiltration of melon fruit tissue with a liquid medium does not block the development of wound-induced ethylene production by either limiting ACC or inhibiting the ongoing conversion of ACC to ethylene. Liquid infiltration of the tissue appears to interfere with the initiation of physiological events during the first 3 h after wounding that are critical for the subsequent conversion of ACC to ethylene.  相似文献   

12.
13.
Several lines of evidence indicate that the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by microsomal membranes from carnation flowers is attributable to hydroperoxides generated by membrane-associated lipoxygenase (EC 1.13.11.12). As the flowers senesce, the capability of isolated microsomal membranes to convert ACC to ethylene changes. This pattern of change, which is distinguishable from that for senescing intact flowers, shows a close temporal correlation with levels of lipid hydroperoxides formed by lipoxygenase in the same membranes. Specific inhibitors of lipoxygenase curtail the formation of lipid hydroperoxides and the production of ethylene from ACC to much the same extent, whereas treatment of microsomes with phospholipase A2, which generates fatty-acid substrates for lipoxygenase, enhances the production of hydroperoxides as well as the conversion of ACC to ethylene. Lipoxygenase-generated lipid hydroperoxides mediate the conversion of ACC to ethylene in a strictly chemical system and also enhance ethylene production by microsomal membranes. The data collectively indicate that the in-vitro conversion ACC to ethylene by microsomal membranes of carnation flowers is not reflective of the reaction mediated by the native in-situ ethylene-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid  相似文献   

14.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

15.
The effect of ethylene on in vitro plant regeneration from frond and rhizome expiants of Platycerium coronarium was investigated. Ethylene levels in the culture vessels increased with time, resulting in a decrease in the percentage of sporophytes produced. Addition of the ethylene action inhibitor silver thiosulfate resulted in an increase in the percentage of plants regenerated, indicating an inhibitory effect of ethylene on regeneration. However, the presence of 2,5-norbornadiene was not effective in reversing the effect of ethylene. Inhibitors of ethylene biosynthesis, such as cobalt chloride, salicylic acid, benzylisothiocyanate, and aminoethoxyvinylglycine, were also ineffective in increasing sporophyte regeneration. 1-Aminocyclopropane-1-carboxylic acid, the ethylene precursor, was ineffective in increasing the level of ethylene in the culture vessels. Therefore, the biosynthetic pathway of ethylene in the fern P. coronarium appears to be different from that of higher plants but similar to that of some other ferns.Abbreviations SA salicylic acid - AVG aminoethoxyvinylglycine - BITC benzylisothiocyanate - STS silver thiosulfate - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

16.
The effect of vanadate on ethylene biosynthesis in detached rice leaves was investigated. Vanadate at pH 5.0–7.0 effectively enhanced ethylene production within 3 h of its application. It promoted the conversion of ACC to ethylene. Treatment with vanadate did not decrease ACC level until late stage of incubation, i.e. at 12 h after incubation. Molybdate, an inhibitor of phosphatase had no or much less stimulatory effect on ethylene production than did vanadate at comparable concentrations. Azide, an inhibitor of F1-ATPase, inhibited ethylene production in detached rice leaves. FC and vanadate were observed to be synergisticly increased ethylene production in detached rice leaves. In conclusion, plasma membrane H+-ATPase does not seem to be involved in ethylene biosynthesis in detached rice leaves.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - FC Fusicoccin  相似文献   

17.
The conversion of 1-aminocyclopropane 1-carboxylic acid (ACC) to ethylene by hypocotyl segments of sunflower (Helianthus annuus L.) seedlings was inhibited by abscisic acid (ABA) and methyl jasmonate (Me-Ja), and this inhibitory effect increased with increasing concentration of both growth regulators. On the contrary, CaCl, enhanced ACC conversion to ethylene at the concentrations of 10-4 M and 5 x 10-4 M, however lower and higher concentrations had no significant action. CaCl, (5 x 10-4M) seemed to magnify the inhibition of the reaction induced by ABA, whereas it reduced (5 x 10-4M) and even abolished (10-3M) the inhibitory action of Me-Ja. The results obtained with a Ca2+ chelator (EGTA), a Ca2+ channel blocker (nifedipine) and calmodulin antagonists (W7 and TFP), given in association with ABA or Me-Ja, suggested that calcium was involved in the inhibition of ACC conversion to ethylene by ABA and Me-Ja through an interaction with calmodulin. However, the mechanism of action of the two growth regulators seemed to be different, since all treatments which resulted in a decrease in cytosolic Ca2+ concentration or in calmodulin action induced a decrease in the effect of ABA and an increase in the effect of Me-Ja.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane 1-carboxylic acid - EFE ethylene for enzyme - EGTA ethylene glycol-bis-2-aminoethyl tetraacetic acid - Me-Ja methyl jasmonate - NIF nifedipine - TFP trifluoperazine dihydrochloride - W7 N-(6-aminohexyl)5-chloro-l-naphthalenesulfonamide hydrochloride  相似文献   

18.
19.
Salicylic acid (SA), a common plant phenolic compound, influences diverse physiological and biochemical processes in plants. To gain insight into the mode of interaction between auxin, ethylene, and SA, the effect of SA on auxininduced ethylene production in mung bean hypocotyls was investigated. Auxin markedly induced ethylene production, while SA inhibited the auxin-induced ethylene synthesis in a dose-dependent manner. At 1 mM of SA, auxininduced ethylene production decreased more than 60% in hypocotyls. Results showed that the accumulation of ACC was not affected by SA during the entire period of auxin treatment, indicating that the inhibition of auxin-induced ethylene production by SA was not due to the decrease in ACC synthase activity, the rate-limiting step for ethylene biosynthesis. By contrast, SA effectively reduced not only the basal level of ACC oxidase activity but also the wound-and ethylene-induced ACC oxidase activity, the last step of ethylene production, in a dose-dependent manner. Northern and immuno blot analyses indicate that SA does not exert any inhibitory effect on the ACC oxidase gene expression, whereas it effectively inhibits both the in vivo and in vitro ACC oxidase enzyme activity, thereby abolishing auxin-induced ethylene production in mung bean hypocotyl tissue. It appears that SA inhibits ACC oxidase enzyme activity through the reversible interaction with Fe2+, an essential cofactor of this enzyme. These results are consistent with the notion that ethylene production is controlled by an intimate regulatory interaction between auxin and SA in mung bean hypocotyl tissue.  相似文献   

20.
Abstract. Phosphate inhibited endogenous as well as 1-aminocyclopropane-1-carboxylic acid (ACC)-stimulated ethylene synthesis in slices of tomato fruit, segments of carrot root and pea hypocotyls. ACC concentrations of up to 10 mol m?3 did not overcome this inhibition. Phosphate inhibited the conversion of 14C ACC to ethylene in tomato fruit and vegetative tissue. Enzymatic conversion of ACC to ethylene by pea seedling homogenate was also inhibited by phosphate with a linear concentration dependency. The formation of ACC from S-adenosylmethionine (SAM) by extracts of pink tomatd fruit was slightly, but not significantly, affected by phosphate. However, the SAM to ACC conversion was greater when extracts from tomato fruit were made in phosphate rather than in HEPES-KOH buffer. Non-enzymatic ethylene synthesis from ACC in a model system was stimulated by phosphate. We suggest that phosphate is an inhibitor of ethylene biosynthesis in higher plants and that one site of its control is the conversion of ACC to ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号