首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
The ubiquitin-proteasome system (UPS) was discovered about 40 years ago and is known to regulate a multitude of cellular processes including protein homeostasis. Ubiquitylated proteins are recognized by downstream effectors, resulting in alterations of protein abundance, activity, or localization. Not surprisingly, the ubiquitylation machinery is dysregulated in numerous diseases, including cancers and neurodegeneration. Mass spectrometry (MS)-based proteomics has emerged as a transformative technology for characterizing protein ubiquitylation in an unbiased fashion. Here, we provide an overview of the different MS-based approaches for studying protein ubiquitylation. We review various methods for enriching and quantifying ubiquitin modifications at the peptide or protein level, outline MS acquisition, and data processing approaches and discuss key challenges. Finally, we examine how MS-based ubiquitinomics can aid both basic biology and drug discovery research.  相似文献   

3.
蛋白质组学是在蛋白质水平定量、动态、整体地研究生物体的一门学科。双向电泳技术、质谱技术和生物信息学是蛋白质组学的三大支撑技术。近年来,蛋白质组学技术从整体水平出发,在更贴近生命本质的层次上去发现和理解并应用于许多疾病的早期预警、诊断和治疗。我们对蛋白质组学在心血管疾病、肝病、胰腺疾病和自身免疫性疾病等研究中的应用做了简单阐述,揭示了蛋白质组学技术在许多重大疾病研究方面具有十分诱人的发展前景。  相似文献   

4.
急性高原病(acute mountain sickness,AMS)是人体急性暴露于高原低压低氧环境后出现多系统生理紊乱的临床综合征。定量蛋白质组学技术可以系统定量并描述机体蛋白质组成和动态变化规律,近年来在多种疾病的预防、诊断、治疗和发生机制等方面研究应用广泛。本文系统综述了定量蛋白质组学技术及其在AMS的预防、诊断、治疗和急进高原习服机制研究中的应用进展,以期为AMS的发病机制、提前干预、临床治疗和AMS的蛋白质组学研究提供参考。  相似文献   

5.
Sprenger RR  Jensen ON 《Proteomics》2010,10(22):3997-4011
Quo Vadis: where are you going? Advances in MS-based proteomics have enabled research to move from obtaining the basic protein inventory of cells and organelles to the ability of monitoring their dynamics, including changes in abundance, location and various PTMs. In this respect, the cellular plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma membrane proteome is crucial for understanding fundamental biological processes, disease mechanisms and for finding drug targets. Protein identification, characterization of dynamic PTMs and protein-ligand interactions, and determination of transient changes in protein expression and composition are among the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required for detailed functional and comparative analysis of the dynamic plasma membrane proteome.  相似文献   

6.
Abstract

Context: Pre-eclampsia (PE) is a common hypertensive disorder of pregnancy that substantially affects maternal and neonatal morbidity and mortality worldwide. The aetiology of the disease remains poorly understood with lack of reliable diagnostic tests. PE is a multisystem disorder so it is very unlikely that a single or a small group of biomarkers will accurately predict the disease. Mass spectrometry (MS) is indispensable analytical tool in protein analysis studies. MS-based proteomics have the ability to detect the entire protein complement to provide a useful window into a range of biological processes and allow the identification of differentially expressed proteins between samples.

Objective: The aim of this review is to summarise, discuss and evaluate the current predominant MS-based approaches applied for protein biomarker discovery. The paper also seeks to evaluate the current potential PE biomarkers described in the literature and identify issues that can guide future research.

Conclusion: MS-based proteomics studies are promising alternatives to classical hypothesis-driven approaches to discover novel biomarkers and provide new insights into the underlying phathophysiological mechanisms of PE. This should aid in the early diagnosis of PE and the understanding of the aetiology of the disease.  相似文献   

7.
Özgür Sahin 《FEBS letters》2009,583(11):1766-1771
Substantial progress in functional genomic and proteomic technologies has opened new perspectives in biomedical research. The sequence of the human genome has been mostly determined and opened new visions on its complexity and regulation. New technologies, like RNAi and protein arrays, allow gathering knowledge beyond single gene analysis. Increasingly, biological processes are studied with systems biological approaches, where qualitative and quantitative data of the components are utilized to model the respective processes, to predict effects of perturbations, and to then refine these models after experimental testing. Here, we describe the potential of applying functional genomics and proteomics, taking the ERBB family of growth-factor receptors as an example to study the signaling network and its impact on cancer.  相似文献   

8.
9.
Clinical mass spectrometry in neuroscience. Proteomics and peptidomics.   总被引:2,自引:0,他引:2  
In this review we discuss the merits and drawbacks with the use of proteomic and peptidomic strategies for identification of proteins and peptides in their multidimensional interactions in complex biological processes. The progress in proteomics and peptidomics during the last years offer us new challenges to study changes in the protein and peptide synthesis. These strategies also offer new tools to follow post-translational modifications and other disturbed chemical processes that may be indicative of pathophysiological alteration(s). Furthermore these techniques can contribute to improvements in the diagnosis and therapy of neurodegenerative diseases, such as Alzheimer's disease, and psychiatric diseases, as depression and post traumatic stress disorders. We also consider different practical aspects of the applications of mass spectrometry in clinical neuroscience, illustrated by example from our laboratories. The new proteomic and peptidomic strategies will further enable the progress for clinical neuroscience research.  相似文献   

10.
血浆蛋白质组学是研究血浆蛋白质的功能和变化的一门科学。血浆中蕴藏着生命机体的所有信息,因此只有彻底了解血浆中存在哪些蛋白质,才能知道如何利用血浆来预测人体对疾病的易感性并监控疾病的进程,以期达到对疾病进行早诊断早治疗。由于血浆蛋白质组动态范围大,给研究带来了很大的困难。尤其是高丰度蛋白质的存在影响了低丰度蛋白质的检测率。而低丰度蛋白质都是有意义的具有临床诊断价值的蛋白质。因此去除高丰度蛋白质的干扰成了血浆蛋白质组学研究的关键。近年来,血浆蛋白质组学相关研究技术也得到了长足进展,为深入研究血浆蛋白质做出了重要贡献。血浆蛋白质组学作为一种无创性的研究方法,值得我们去探讨。本文就血浆蛋白质组学研究进展情况做一简要综述。  相似文献   

11.
Proteomics technologies and challenges   总被引:4,自引:0,他引:4  
Proteomics is the study of proteins and their interactions in a cell. With the completion of the Human Genome Project, the emphasis is shifting to the protein compliment of the human organism. Because proteome reflects more accurately on the dynamic state of a cell, tissue, or organism, much is expected from proteomics to yield better disease markers for diagnosis and therapy monitoring. The advent of proteomics technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of diseases. High-throughput proteomics technologies combining with advanced bioinformatics are extensively used to identify molecular signatures of diseases based on protein pathways and signaling cascades. Mass spectrometry plays a vital role in proteomics and has become an indispensable tool for molecular and cellular biology. While the potential is great, many challenges and issues remain to be solved, such as mining low abundant proteins and integration of proteomics with genomics and metabolomics data. Nevertheless, proteomics is the foundation for constructing and extracting useful knowledge to biomedical research. In this review, a snapshot of contemporary issues in proteomics technologies is discussed.  相似文献   

12.
Given superior analytical features, MS proteomics is well suited for the basic investigation and clinical diagnosis of human disease. Modern MS enables detailed functional characterization of the pathogenic biochemical processes, as achieved by accurate and comprehensive quantification of proteins and their regulatory chemical modifications. Here, we describe how high‐accuracy MS in combination with high‐resolution chromatographic separations can be leveraged to meet these analytical requirements in a mechanism‐focused manner. We review the quantification methods capable of producing accurate measurements of protein abundance and posttranslational modification stoichiometries. We then discuss how experimental design and chromatographic resolution can be leveraged to achieve comprehensive functional characterization of biochemical processes in complex biological proteomes. Finally, we describe current approaches for quantitative analysis of a common functional protein modification: reversible phosphorylation. In all, current instrumentation and methods of high‐resolution chromatography and MS proteomics are poised for immediate translation into improved diagnostic strategies for pediatric and adult diseases.  相似文献   

13.
Parkinson's disease (PD) is a complex neurological disorder, characterized by selective degeneration of nigrostriatal dopaminergic neurons. It is a multi-factorial disease, contributed by a combination of age, genetic and environmental factors. Etiology of sporadic PD and mechanism underlying selective loss of dopaminergic neurons has not yet been clearly understood. Recent developments in genomics and proteomics have revolutionized the research on PD at genetic level. Differential gene expression patterns (DNA biochip technology), age-dependent complex genetic patterns (SNP genotyping), and protein expression profiles (proteomics) of PD patients have started providing the specific and rigorous molecular explanation and role of modifying factors in PD. Genomics and proteomics are further expected to help in developing biomarkers for diagnosis of early onset PD and also to develop valuable and potential therapeutic strategies for its treatment. In this review, we have discussed the progress made by genomics and proteomics, in understanding the role of modifying factors in PD.  相似文献   

14.
Quantitation is an inherent requirement in comparative proteomics and there is no exception to this for plant proteomics. Quantitative proteomics has high demands on the experimental workflow, requiring a thorough design and often a complex multi-step structure. It has to include sufficient numbers of biological and technical replicates and methods that are able to facilitate a quantitative signal read-out. Quantitative plant proteomics in particular poses many additional challenges but because of the nature of plants it also offers some potential advantages. In general, analysis of plants has been less prominent in proteomics. Low protein concentration, difficulties in protein extraction, genome multiploidy, high Rubisco abundance in green tissue, and an absence of well-annotated and completed genome sequences are some of the main challenges in plant proteomics. However, the latter is now changing with several genomes emerging for model plants and crops such as potato, tomato, soybean, rice, maize and barley. This review discusses the current status in quantitative plant proteomics (MS-based and non-MS-based) and its challenges and potentials. Both relative and absolute quantitation methods in plant proteomics from DIGE to MS-based analysis after isotope labeling and label-free quantitation are described and illustrated by published studies. In particular, we describe plant-specific quantitative methods such as metabolic labeling methods that can take full advantage of plant metabolism and culture practices, and discuss other potential advantages and challenges that may arise from the unique properties of plants.  相似文献   

15.
The human respiratory system represents a vital but vulnerable system. It is a major target for many diseases such as cancer and asthma. The incidence of these diseases has increased dramatically in the last 40-50 years. In the search for possible new therapies, many experimental tools and methods have been developed to study these diseases, ranging from animal models to in vitro studies. In the last decades, genomic and proteomic approaches have gained a lot of attention. After the major scientific breakthroughs in the field of genomics, it is now widely accepted that to understand biological processes, large-scale protein studies through proteomics techniques are required. In the battle against lung cancer, the proteomics approach has already been successfully implemented. Surprisingly, only a few proteomics studies on the ever-increasing global asthma problem have been published so far. And although proteomics also has its limitations and experimental difficulties, in our opinion, proteomics can definitely contribute to the understanding of a complex disease such as asthma. Therefore, the additional values and possibilities of proteomics in asthma research should be thoroughly investigated. A close collaboration between the different scientific disciplines may eventually lead to the development of new therapeutic strategies against asthma.  相似文献   

16.
The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods.  相似文献   

17.
微小RNA(micro RNA,mi RNA)是一类真核生物内源性非编码单链的小RNA分子,长度大约为19-23个核苷酸,拥有高度的保守性,不编码蛋白质,也是近年来研究最热门的一个新领域,通过与靶m RNA特异性结合来调节基因表达,且表达都具有组织特异性。最近,许多研究表明mi RNA在心血管系统疾病和肿瘤疾病方面的相关研究都取得了突破性的进展,mi RNA在肿瘤疾病中是通过调节癌基因及抑癌基因而调控肿瘤的生物学过程,在心血管系统疾病中与心肌肥厚及心肌再生等过程有密切的关系,包括冠状动脉疾病、心肌肥大、心肌梗死、心律失常、高血压和心力衰竭等疾病,且在心脏病学中扮演着及其重要的角色。Mi RNA的表达量增加或者减少对心血管疾病都有影响,该文对新近有关的mi RNA在心血管系统疾病中的研究进展、诊断、治疗以及预后予以综述。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号