首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligonucleotides 3'-d(GTGTGTGTGG)-L-d(GGTGTGTGTG)-3' (hp-GT) and 3'-d(G4STG4TG4STG4STGG)-L-d(GGTGTGTGTG)-3' (hp-SGT), (L=(CH2CH2O)3), were shown by use of several optical techniques to form a novel parallel-stranded (ps) intramolecular double helix with purine-purine and pyrimidine-pyrimidine base pairing. The rotational relaxation time of hp-GT was similar to that of a 10-bp reference duplex, and the fraction of unpaired bases was determined to be approximately 7%, testifying to the formation of an intramolecular double helical hairpin by the sequence under the given experimental conditions. A quasi-two-state mode of ps-double helix formation was validated, yielding a helix-coil transition enthalpy of -135 +/- 5 kJ/mol. The G x G and T x T (or 4ST x T) base pair configurations and conformational parameters of the double helix were derived with molecular modeling by force field techniques. Repetitive d(GT) sequences are abundant in telomers of different genomes and in the regulatory regions of genes. Thus, the observed conformational potential of the repetitive d(GT) sequence may be of importance in the regulation of cell processes.  相似文献   

2.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

3.
Single-strand DNA triple-helix formation   总被引:4,自引:0,他引:4  
R H?ner  P B Dervan 《Biochemistry》1990,29(42):9761-9765
Chemical modification studies provide evidence that single-stranded oligodeoxyribonucleotides can form stable intrastrand triple helices. Two oligonucleotides of opposite polarity were synthesized, each composed of a homopurine-homopyrimidine hairpin stem linked to a pyrimidine sequence which is capable of folding back on the hairpin stem and forming specific Hoogsteen hydrogen bonds. Using potassium permanganate as a chemical modification reagent, we have found that two oligodeoxyribonucleotides of sequence composition type 5'-(purine)8(N)4(pyrimidine)8(N)6(pyrimidine)8-3' and 5'-(pyrimidine)8N6(pyrimidine)8N4(purine)8-3' undergo dramatic structural changes consistent with intrastrand DNA triple-helix formation induced by lowering the pH or raising the Mg2+ concentration. The intrastrand DNA triple helix is sensitive to base mismatches.  相似文献   

4.
Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine?pyrimidine (Pu?Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))?(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5'-C(2)TC(5)TC(2)-3', an oligonucleotide complementary to the 3'-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu?Py sequences may be pertinent to gene regulation.  相似文献   

5.
B Faucon  J L Mergny    C Hlne 《Nucleic acids research》1996,24(16):3181-3188
Exon 5 of the human aprt gene contains an oligo-purine-oligopyrimidine stretch of 17 bp (5'-CCCTCTTCTCTCTCCT-3') within the coding region. (T,C)-, (G,T)- and (G,A)-containing oligonucleotides were compared for their ability to form stable triple helices with their DNA target. (G,T) oligodeoxynucleotides, whether parallel or antiparallel, were unable to bind to this sequence. This is in contrast to (G,A) (purine) and (T,C) (pyrimidine) oligonucleotides, which bind to the duplex at near neutral pH. Binding was highly sequence specific, as unrelated competitors were unable to interfere with target recognition. A major difference between the purine and pyrimidine oligodeoxynucleotides was observed in the kinetics of binding: the (G,A) oligonucleotide binds to its target much faster than the (T,C) oligomer. With the purine oligonucleotide, complete binding was achieved in a matter of minutes at micromolar concentrations, whereas several hours were required with the pyrimidine oligomer. Thus, the general observation that triplex formation is slow with pyrimidine oligodeoxynucleotides does not hold for (G,A) oligodeoxynucleotides. Purine and pyrimidine oligodeoxynucleotides covalently linked to a psoralen group were able to induce crosslinks on the double-stranded DNA target upon UV irradiation. This study provides a detailed comparison of the different types of DNA triplexes under the same experimental conditions.  相似文献   

6.
S Wang  E T Kool 《Nucleic acids research》1994,22(12):2326-2333
We report the synthesis and nucleic acid binding properties of two cyclic RNA oligonucleotides designed to bind single-stranded nucleic acids by pyr.pur.pyr-type triple helix formation. The circular RNAs are 34 nucleotides in size and were cyclized using a template-directed nonenzymatic ligation. To ensure isomeric 3'-5' purity in the ligation reaction, one nucleotide at the ligation site is a 2'-deoxyribose. One circle (1) is complementary to the sequence 5'-A12, and the second (2) is complementary to 5'-AAGAAAGAAAAG. Results of thermal denaturation experiments and mixing studies show that both circles bind complementary single-stranded DNA or RNA substrates by triple helix formation, in which two domains in a pyrimidine-rich circle sandwich a central purine-rich substrate. The affinities of these circles with their purine complements are much higher than the affinities of either the linear precursors or simple Watson-Crick DNA complements. For example, circle 1 binds rA12 (pH 7.0, 10 mM MgCl2, 100 mM NaCl) with a Tm of 48 degrees C and a Kd (37 degrees C) of 4.1 x 10(-9) M, while the linear precursor of the circle binds with a Tm of 34 degrees C and a Kd of 1.2 x 10(-6) M. The complexes of circle 2 are pH-dependent, as expected for triple helical complexes involving C(+)G.C triads, and mixing plots for both circles reveal one-to-one stoichiometry of binding either to RNA or DNA substrates. Comparison of circular RNAs with previously synthesized circular DNA oligonucleotides of the same sequence reveals similar behavior in the binding of DNA, but strikingly different behavior in the binding of RNA. The cyclic DNAs show high DNA-binding selectivity, giving relatively weaker duplex-type binding with complementary RNAs. The relative order of thermodynamic stability for the four types of triplex studied here is found to be DDD >> RRR > RDR >> DRD. The results are discussed in the context of recent reports of strong triplex dependence on RNA versus DNA backbones. Triplex-forming circular RNAs represent a novel and potentially useful strategy for high-affinity binding of RNA.  相似文献   

7.
The ability of oligonucleotides 3'-d(GT)5pO(CH2)6Opd(GT)5-5' (anti[d(GT)]) and 3'-d(GT)5pO(CH2)6Opd(GT)5-3' (par[par[d(GT)]) to form tertiary structures has been studied. Circular dichroism (CD) as well as the fluorescence of the ethidium bromide (EtBr) complexes with oligonucleotides and hydrodynamic volume measurements in solutions containing 0.01 M phosphate buffer, pH 7 and NaCl in concentrations from 0.1 M to 1 M, have been used. The data obtained in the temperature interval from 3 degrees C to 10 degrees C are in good agreement with the structure suggested earlier where the par[d(GT)] and anti[d(GT)] form structures with four parallel strands in which layers of four G-residues alternate with unpaired bulged-out T-residues. Ethidium bromide interacts with the structure in a cooperative manner. Two ethidium bromide molecules intercalate between two layers of four G-residues.  相似文献   

8.
Sequences located several kilobases both 5' and 3' of the stably transcribed portion of several genes hybridize to radio-labeled pure fragments of the alternating sequence poly (dG-dT) (dC-dA) ["poly(GT)"]. The genes include the ribosomal DNA of mouse, rat, and human, and also human glucose-6-phosphate dehydrogenase (G6PD) and mouse hypoxanthine-guanine phosphoribosyl transferase (HPRT). HPRT has additional hybridizing sequences in introns. Fragments that include the hybridizing sequences and up to 300 bp of adjoining DNA show perfect runs of poly(GT) (greater than 30bp) in all but the human 5' region of rDNA, which shows a somewhat different alternating purine:pyrimidine sequence, poly(GTAT) (36bp). Within 150 bp of these sequences in various instances are found a number of other sequences reported to affect DNA conformation in model systems. Most marked is an enhancement of sequences matching at least 67% to the consensus binding sequence for topoisomerase II. Two to ten-fold less of such sequences were found in other sequenced portions of the nontranscribed spacer or in the transcribed portion of rDNA. The conservation of the locations of tracts of alternating purine:pyrimidine between evolutionarily diverse species is consistent with a possible functional role for these sequences.  相似文献   

9.
10.
An effect of 5'-phosphorylation on the stability of triple helical DNA containing pyrimidine:purine:pyrimidine strands has been demonstrated by both gel electrophoresis and UV melting. A 5'-phosphate on the purine-rich middle strand of a triple helix lowers the stability of triple helix formation by approximately 1 kcal/mol at 25 degrees C. The middle strand is involved in both Watson-Crick and Hoogsteen base pairing. In contrast, a 5'-phosphate on the pyrimidine-rich strands, which are involved in either Watson-Crick or Hoogsteen base pairing, has a smaller effect on the stability of triple helix. The order of stability is: no phosphate on either strand > phosphate on both pyrimidine strands > phosphate on purine strand > phosphate on all three strands. Differential stability of triple helix species is postulated to stem from an increase in rigidity due to steric hindrance from the 5'-phosphate. This result indicates that labelling with 32P affect equilibrium in triplex formation.  相似文献   

11.
We showed earlier that oligonucleotides 3'-d(GT)5-pO(CH2CH2O)3p-d(GT)5-3' form bimolecular quadruplexes with parallel orientation of their strands, which are held by guanine quartets alternating with unpaired thymines (GT quadruplex). This work deals with the conformational polymorphism and extensibility of G quadruplexes in complex with molecules of an intercalating agent ethidium bromide (EtBr). A cooperative mechanism of EtBr binding to the GT quadruplex was revealed. The binding constant K = (3.3 +/- 0.1) x 10(4) M-1, cooperativity coefficient omega = 2.5 +/- 0.2, and maximal amount of EtBr molecules intercalated in GT quadruplex (N = 8) were determined. It was proved experimentally by analysis of adsorption isotherms and theoretically by mathematical modeling that the GT quadruplex is capable of double extension, which is indicative of the high elasticity of this four-stranded helix. Two most stable conformations of GT quadruplexes with thymine residues intercalated and/or turned outside were found by mechanico-mathematical modeling. The equilibrium is shifted toward the conformation with the looped out thymine residues upon intercalation of EtBr molecules into the GT quadruplex.  相似文献   

12.
S F Singleton  P B Dervan 《Biochemistry》1992,31(45):10995-11003
The energetics of oligodeoxyribonucleotide-directed triple helix formation for the pyrimidine.purine.pyrimidine structural motif were determined over the pH range 5.8-7.6 at 22 degrees C (100 mM Na+ and 1 mM spermine) using quantitative affinity cleavage titration. The equilibrium binding constants for 5'-TTTTTCTCTCTCTCT-3' (1) and 5'-TTTTTm5CTm5CTm5CTm5CTm5CT-3' (2, m5C is 2'-deoxy-5-methylcytidine) increased by 10- and 20-fold, respectively, from pH 7.6 to 5.8, indicating that the corresponding triple-helical complexes are stabilized by 1.4 and 1.7 kcal.mol-1, respectively, at the lower pH. Replacement of the five cytosine residues in 1 with 5-methylcytosine residues to yield 2 affords a stabilization of the triple helix by 0.1-0.4 kcal.mol-1 over the pH range 5.8-7.6. An analysis of these data in terms of a quantitative model for a general pH-dependent equilibrium transition revealed that pyrimidine oligonucleotides with cytidine and 5-methylcytidine form local triple-helical structures with apparent pKa's of 5.5 (C+GC triplets) and 5.7 (m5C+GC triplets), respectively, and that the oligonucleotides should bind to single sites on large DNA with apparent affinity constants of approximately 10(6) M-1 even above neutral pH.  相似文献   

13.
DNA triple helices offer exciting new perspectives toward oligonucleotide-directed inhibition of gene expression. Purine and GT triplexes appear to be the most promising motifs for stable binding under physiological conditions compared to the pyrimidine motif, which forms at relatively low pH. There are, however, very little data available for comparison of the relative stabilities of the different classes of triplexes under identical conditions. We, therefore, designed a model system which allowed us to set up a competition between the oligonucleotides of the purine and pyrimidine motifs targeting the same Watson-Crick duplex. Several conclusions may be drawn: (i) a weak hypochromism at 260 nm is associated with purine triplex formation; (ii) delta H degree of GA, GT and TC triplex formation (at pH 7.0) was calculated as -0.1, -2.5 and -6.1 kcal/mol per base triplet, respectively. This unexpectedly low delta H degree for the purine triple helix formation implies that its delta G degree is nearly temperature-independent and it explains why these triplexes may still be observed at high temperatures. In contrast, the pyrimidine triplex is strongly favoured at lower temperatures; (iii) as a consequence, in a system where two third-strands compete for triplex formation, displacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This original purine-to-pyrimidine triplex conversion shows a significant hypochromism at 260 nm and a hyperchromism at 295 nm which is similar to the duplex-to-triplex conversion in the pyrimidine motif. Further evidence for this triplex-to-triplex conversion is provided by mung bean-nuclease foot-printing assay.  相似文献   

14.
15.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

16.
A Debin  C Malvy    F Svinarchuk 《Nucleic acids research》1997,25(10):1965-1974
In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.  相似文献   

17.
18.
The ability of oligonucleotides 3'-d(GT)5pO(CH2)5Opd(GT)5-5' (anti[d(GT)]) and 3'-d(GT)5pO(CH2)6Opd(GT)5-3' (par[d(GT)]) to form hairpins and higher associates is studied. Optical methods of thermal denaturation and circular dichroism as well as the fluorescence of ethidium bromide and acridine orange bound to oligonucleotides were used. At room temperatures the formation of hairpin structure with parallel and antiparallel strands is possible. Thermodynamic parameters of par[d(GT)] and anti[d(GT)] are similar and equal to delta H = -15 kcal/mol, delta S = -50 cal/mol. deg. In the temperature range 3-10 degrees C par[d(GT)] and anti[d(GT)] form four-stranded structures with parallel chains, in which layers of four G-residues alternate with unpaired T-residues being bulged out easily. On comparison of occurrence of alternating (GT)n, (GC)n and (G)n sequences in genome it can be stated that (GT)n biological functions could be connected with conformational possibilities of the four-stranded parallel structures with unpaired T-residues.  相似文献   

19.
Selected sequences of oligodeoxyribonucleotides (ODNs) have been conjugated efficiently with distamycin-based peptides containing reactive cysteine and oxyamine functionalities at the C-terminus. The conjugation was performed easily within 30-60 min, using individual modified oligonucleotide stretches having sequences of 5'-d(GCTTTTTTCG)-3', 5'-d(GCTATATACG)-3', and 5'-AGCGCGCGCA-3'. Two types of linkages were used for making the covalent connection: (i) a five-membered thiazolidine ring and (ii) an oxime. These distamycin-like polyamide-ODN conjugates were then converted to the corresponding DNA duplexes using complementary oligonucleotide sequences. To elucidate the binding specificity of the distamycin-oligonucleotide conjugates, UV-melting temperature measurements were performed. These studies indicated that the distamycin-ODN conjugate favored binding with the duplex with sequence 5'-d(GCTTTTTTCG)-3' rather than 5'-d(GCTATATACG)-3'. On the other hand, no stabilization of the duplex with sequence 5'-d(AGCGCGCGCA)-3' was observed. UV results also suggest that the thiazolidine and oxime linkages do not significantly influence the process of distamycin binding to the minor groove surface of the DNA duplex. The results obtained from duplex UV-melting studies were further corroborated by a temperature-dependent study of the circular dichroism spectra of the conjugates and a fluorescence displacement titration assay using Hoechst 33258 fluorophore as a competitive binder for the minor groove. All these studies reinforce the fact that the specific stabilization of A/T rich DNA-DNA duplexes by distamycin was preserved upon conjugation with oligonucleotide stretches.  相似文献   

20.
Using circular dichroism spectroscopy the ability of berenil, a minor groove binding drug, to induce triple helix formation was investigated with two oligonucleotides designed to form two intramolecular triplexes containing T*A:T and G*G:C triplets, which differ only by the orientation of their third strand: 5'-d(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), and 5'-d(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4), where [T4] represents a stretch of four thymine residues. We demonstrate that when added to the duplex form of these oligonucleotides, berenil induces triplex structure formation only if the orientation of third strand is anti-parallel to the purine strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号