首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
1. Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. 2. The aim of the present study was to determine the long distance dispersal capabilities of two non‐native pine bark beetles (Hylurgus ligniperda and Hylastes ater) in a modified and fragmented landscape with non‐native pine trees. The role of pine density in relation to the abundance of dispersing beetles was also investigated. 3. This study took place in the Southern Alps, New Zealand. A network of insect panel traps was installed in remote valleys at known distances from pine resources (plantations or windbreaks). Beetle abundance was compared with spatially weighted estimates of nearby pine plantations and pine windbreaks. 4. Both beetles were found ≥25 km from the nearest host patch, indicating strong dispersal and host detection capabilities. Small pine patches appear to serve as stepping stones, promoting spread through the landscape. Hylurgus ligniperda (F.) abundance had a strong inverse association with pine plantations and windbreaks, whereas H. ater abundance was not correlated with distance to pine plantations but positively correlated with distance to pine windbreaks, probably reflecting differences in biology and niche preferences. Host availability and dispersed beetle abundance are the proposed limiting factors impeding the spread of these beetles. 5. These mechanistic insights into the spread and persistence of H. ater and H. ligniperda in a fragmented landscape provide ecologists and land managers with a better understanding of factors leading to successful invasion events, particularly in relation to the importance of long‐distance dispersal ability and the distribution and size of host patches.  相似文献   

2.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

3.
Density-dependent dispersal in host-parasitoid assemblages   总被引:2,自引:0,他引:2  
Most spatial population models assume constant rates of dispersal. However, in a given community, dispersal may not only depend on the density of conspecifics, i.e. density‐dependent dispersal, but also on the density of other species, a phenomenon we term ‘community‐dependent dispersal’. We co‐vary the densities of both the beetle host Callosobruchus chinensis and its parasitoid wasp, Anisopteromalus calandrae, in a laboratory study and record the proportions of each species that disperse within a two‐hour period. The parasitoid in these systems exhibits community‐dependent dispersal – dispersing more frequently when parasitoid density is high and larval host density is low. This supported our prediction that individuals should disperse according to competition for available resources. However, in this study the host's dispersal was independent of density. We suggest that this may be due to less intense selection acting on host dispersal strategies than on the parasitoid. We consider some possible consequences of community‐dependent dispersal for a number of spatial population processes. A well‐known host‐parasitoid metapopulation model is expanded so that it includes a greater range of dispersal functions. When the model is parameterised with the parasitoid community‐dependent dispersal function observed in the empirical study, similar population dynamics are obtained as when fixed‐rate dispersal functions are applied. The importance of dispersal functions for invasions of both competitive and host‐parasitoid systems is also considered. The model results demonstrate that understanding how individuals disperse in response to different species’ population densities is important in determining the rate of spread of an invasion. We suggest that more empirical studies are needed to establish what determines dispersal rate and distance in a range of species, combined with theoretical studies investigating the role of the dispersal function in determining spatial population processes.  相似文献   

4.
Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non‐native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long‐distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion.  相似文献   

5.
The abundance–impact curve is helpful for understanding and managing the impacts of non‐native species. Abundance–impact curves can have a wide range of shapes (e.g., linear, threshold, sigmoid), each with its own implications for scientific understanding and management. Sometimes, the abundance–impact curve has been viewed as a property of the species, with a single curve for a species. I argue that the abundance–impact curve is determined jointly by a non‐native species and the ecosystem it invades, so that a species may have multiple abundance–impact curves. Models of the impacts of the invasive mussel Dreissena show how a single species can have multiple, noninterchangeable abundance–impact curves. To the extent that ecosystem characteristics determine the abundance–impact curve, abundance–impact curves based on horizontal designs (space‐for‐time substitution) may be misleading and should be used with great caution, it at all. It is important for scientists and managers to correctly specify the abundance–impact curve when considering the impacts of non‐native species. Diverting attention from the invading species to the invaded ecosystem, and especially to the interaction between species and ecosystem, could improve our understanding of how non‐native species affect ecosystems and reduce uncertainty around the effects of management of populations of non‐native species.  相似文献   

6.
7.
Understanding the factors that determine rates of range expansion is not only crucial for developing risk assessment schemes and management strategies for invasive species, but also provides important insight into the ability of species to disperse in response to climate change. However, there is little knowledge on why some invasions spread faster than others at large spatiotemporal scales. Here, we examine the effects of human activities, species traits and characteristics of the invaded range on spread rates using a global sample of alien reptile and amphibian introductions. We show that spread rates vary remarkably among invaded locations within a species, and differ across biogeographical realms. Spread rates are positively related to the richness of native congeneric species and human‐assisted dispersal in the invaded range but are negatively correlated with topographic heterogeneity. Our findings highlight the importance of environmental characteristics and human‐assisted dispersal in developing robust frameworks for predicting species' range shifts.  相似文献   

8.
Roads are known to act as corridors for dispersal of plant species. With their variable microclimate, role as corridors for species movement and reoccurring disturbance events, they show several characteristics that might influence range dynamics of both native and non‐native species. Previous research on plant species ranges in mountains however seldom included the effects of roads. To study how ranges of native and non‐native species differ between roads and adjacent vegetation, we used a global dataset of plant species composition along mountain roads. We compared average elevation and range width of species, and used generalized linear mixed models (GLMMs) to compile their range optimum and amplitude. We then explored differences between roadside and adjacent plots based on a species’ origin (native vs non‐native) and nitrogen and temperature affinity. Most non‐native species had on average higher elevational ranges and broader amplitudes in roadsides. Higher optima for non‐native species were associated with high nitrogen and temperature affinity. While lowland native species showed patterns comparable to those in non‐native species, highland native species had significantly lower elevational ranges in roadsides compared to the adjacent vegetation. We conclude that roadsides indeed change the elevational ranges of a variety of species. These changes are not limited to the expansion of non‐native species along mountain roads, but also include both upward and downward changes in ranges of native species. Roadsides may thus facilitate upward range shifts, for instance related to climate change, and they could serve as corridors to facilitate migration of alpine species between adjacent high‐elevation areas. We recommend including the effects of mountain roads in species distribution models to fine‐tune the predictions of range changes in a warming climate.  相似文献   

9.
The monk parakeet (Myiopsitta monachus) is a successful invasive species that does not exhibit life history traits typically associated with colonizing species (e.g., high reproductive rate or long‐distance dispersal capacity). To investigate this apparent paradox, we examined individual and population genetic patterns of microsatellite loci at one native and two invasive sites. More specifically, we aimed at evaluating the role of propagule pressure, sexual monogamy and long‐distance dispersal in monk parakeet invasion success. Our results indicate little loss of genetic variation at invasive sites relative to the native site. We also found strong evidence for sexual monogamy from patterns of relatedness within sites, and no definite cases of extra‐pair paternity in either the native site sample or the examined invasive site. Taken together, these patterns directly and indirectly suggest that high propagule pressure has contributed to monk parakeet invasion success. In addition, we found evidence for frequent long‐distance dispersal at an invasive site (~100 km) that sharply contrasted with previous estimates of smaller dispersal distance made in the native range (~2 km), suggesting long‐range dispersal also contributes to the species’ spread within the United States. Overall, these results add to a growing body of literature pointing to the important role of propagule pressure in determining, and thus predicting, invasion success, especially for species whose life history traits are not typically associated with invasiveness.  相似文献   

10.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

11.
The spread of the pine wood nematode (PWN), Bursaphelenchus xylophylus (Nematoda; Aphelenchoididae), the causal agent of the pine wilt disease, is greatly constrained to the dispersal of its vectors, long‐horned beetles of the Monochamus genus. Disease spread at global and regional scales has been mainly caused by human‐mediated transport, yet at a local scale, the short‐ and long‐distance dispersal behaviour of the beetles determine colonization dynamics. Three mark–release–recapture experiments using commercial traps and lures allowed the parameterization of the dispersal kernel under two landscape fragmentation scenarios for the only known European PWN vector, Monochamus galloprovincialis. The respective release of 171 and 353 laboratory‐reared beetles in continuous pine stands in 2009 and 2010 resulted in 36% and 28% recapture rates, yet, at a fragmented landscape in 2011, only 2% of the released 473 individuals could be recaptured. Recaptures occurred as soon as 7–14 days after their release, in agreement with the requirement of sexual maturation to respond to the pheromone–kairomone attractants. Data from the first two experiments were fitted to one mechanical and two empirical dispersal models, from which the distance dispersal kernels could be computed. Derived estimated radii enclosing 50% and 99% of dispersing M. galloprovincialis under continuous pine stands ranged between 250–532 m and 2344–3495 m depending on the replicate and choice of model. Forecasted recaptures in 2011 resulted in a moderate underestimation of long‐distance dispersal, probably influenced by the high degree of habitat fragmentation. In addition, trapping parameters such as the effective sampling area (0.57–0.76 ha) or the seasonal sampling range (426–645 m) could be derived. Observed results, derived dispersal kernels and trapping parameters provide valuable information for the integrated pest management of PWD. Furthermore, estimated dispersal distances indicate that ongoing clear‐cut measures for eradication in the European Union are likely ineffective in stopping the vectors dispersal.  相似文献   

12.
Understanding the ability of plants to spread is important for assessing conservation strategies, landscape dynamics, invasiveness and ability to cope with climate change. While long‐distance seed dispersal is often viewed as a key process in population spread, the importance of inter‐specific variation in demography is less explored. Indeed, the relative importance of demography vs seed dispersal in determining population spread is still little understood. We modelled species’ potential for population spread in terms of annual migration rates for a set of species inhabiting dry grasslands of central Europe. Simultaneously, we estimated the importance of demographic (population growth rate) versus long‐distance dispersal (99th percentile dispersal distance) characteristics for among‐species differences in modelled population spread. In addition, we assessed how well simple proxy measures related to demography (the number and survival of seedlings, the survival of flowering individuals) and dispersal (plant height, terminal velocity and wind speed during dispersal) predicted modelled spread rates. We found that species’ demographic rates were the more powerful predictors of species’ modelled potential to spread than dispersal. Furthermore, our simple proxies were correlated with modelled species spread rates and together their predictive power was high. Our findings highlight that for understanding variation among species in their potential for population spread, detailed information on local demography and dispersal might not always be necessary. Simple proxies or assumptions that are based primarily on species demography could be sufficient.  相似文献   

13.
Plant–soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short‐term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non‐native species, or a mixed plant community in different plots in a common‐garden experiment. After 4 years, plants were removed and one native and one non‐native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non‐native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non‐native, Centaurea diffusa, and non‐native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata. Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common‐garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non‐native plant community on non‐native soils. In contrast, when PSF effects were removed, the model predicted that non‐native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank‐order abundance of native and non‐native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors through soil‐mediated effects.  相似文献   

14.
Quantifying the role of spatial patterns is an important goal in ecology to further understand patterns of community composition. We quantified the relative role of environmental conditions and regional spatial patterns that could be produced by environmental filtering and dispersal limitation on fish community composition for thousands of lakes. A database was assembled on fish community composition, lake morphology, water quality, climatic conditions, and hydrological connectivity for 9885 lakes in Ontario, Canada. We utilized a variation partitioning approach in conjunction with Moran's Eigenvector Maps (MEM) and Asymmetric Eigenvector Maps (AEM) to model spatial patterns that could be produced by human‐mediated and natural modes of dispersal. Across 9885 lakes and 100 fish species, environmental factors and spatial structure explained approximately 19% of the variation in fish community composition. Examining the proportional role of spatial structure and environmental conditions revealed that as much as 90% of the explained variation in native species assemblage composition is governed by environmental conditions. Conversely on average, 67% of the explained variation in non‐native assemblage composition can be related to human‐mediated dispersal. This study highlights the importance of including spatial structure and environmental conditions when explaining patterns of community composition to better discriminate between the ecological processes that underlie biogeographical patterns of communities composed of native and non‐native fish species.  相似文献   

15.
Seed dispersal is a central process in plant ecology with consequences for species composition and habitat structure. Some bird species are known to disperse the seeds they ingest, whereas others, termed ‘seed predators’, digest them and apparently play no part in dispersal, but it is not clear if these are discrete strategies or simply the ends of a continuum. We assessed dispersal effectiveness by combining analysis of faecal samples and bird density. The droppings of seed dispersers contained more entire seeds than those of typical seed predators, but over a quarter of the droppings of seed predators contained whole seeds. This effect was further magnified when bird density was taken into account, and was driven largely by one frequent interaction: the Chaffinch Fringilla coelebs, a typical seed predator and the most abundant bird species in the area and dispersed seeds of Leycesteria formosa, a non‐native plant with berry‐like fruits. These results suggest the existence of a continuum between seed predators and seed dispersers.  相似文献   

16.
Aims Our study aimed to characterize the dispersal dynamics and population genetic structure of the introduced golden mussel Limnoperna fortunei throughout its invaded range in South America and to determine how different dispersal methods, that is, human‐mediated dispersal and downstream natural dispersal, contribute to genetic variation among populations. Location Paraná–Uruguay–Río de la Plata watershed in Argentina, Brazil, Paraguay and Uruguay. Methods We performed genetic analyses based on a comprehensive sampling strategy encompassing 22 populations (N = 712) throughout the invaded range in South America, using the mitochondrial cytochrome c oxidase subunit I (COI) gene and eight polymorphic nuclear microsatellites. We employed both population genetics and phylogenetic analyses to clarify the dispersal dynamics and population genetic structure. Results We detected relatively high genetic differentiation between populations (FST = ?0.041 to 0.111 for COI, ?0.060 to 0.108 for microsatellites) at both fine and large geographical scales. Bayesian clustering and three‐dimensional factorial correspondence analyses consistently revealed two genetically distinct clusters, highlighting genetic discontinuities in the invaded range. Results of all genetic analyses suggest ship‐mediated ‘jump’ dispersal as the dominant mode of spread of golden mussels in South America, while downstream natural dispersal has had limited effects on contemporary genetic patterns. Main conclusions Our study provides new evidence that post‐establishment dispersal dynamics and genetic patterns vary across geographical scales. While ship‐mediated ‘jump’ dispersal dominates post‐establishment spread of golden mussels in South America, once colonies become established in upstream locations, larvae produced may be advected downstream to infill patchy distributions. Moreover, genetic structuring at fine geographical scales, especially within the same drainages, suggests a further detailed understanding of dynamics of larval dispersal and settlement in different water systems. Knowledge of the mechanisms by which post‐establishment spread occurs can, in some cases, be used to limit dispersal of golden mussels and other introduced species.  相似文献   

17.
Life‐history traits of invasive exotic plants are typically considered to be exceptional vis‐à‐vis native species. In particular, hyper‐fecundity and long range dispersal are regarded as invasive traits, but direct comparisons with native species are needed to identify the life‐history stages behind invasiveness. Until recently, this task was particularly problematic in forests as tree fecundity and dispersal were difficult to characterize in closed stands. We used inverse modelling to parameterize fecundity, seed dispersal and seedling dispersion functions for two exotic and eight native tree species in closed‐canopy forests in Connecticut, USA. Interannual variation in seed production was dramatic for all species, with complete seed crop failures in at least one year for six native species. However, the average per capita seed production of the exotic Ailanthus altissima was extraordinary: > 40 times higher than the next highest species. Seed production of the shade tolerant exotic Acer platanoides was average, but much higher than the native shade tolerant species, and the density of its established seedlings (≥ 3 years) was higher than any other species. Overall, the data supported a model in which adults of native and exotic species must reach a minimum size before seed production occurred. Once reached, the relationship between tree diameter and seed production was fairly flat for seven species, including both exotics. Seed dispersal was highly localized and usually showed a steep decline with increasing distance from parent trees: only Ailanthus altissima and Fraxinus americana had mean dispersal distances > 10 m. Janzen‐Connell patterns were clearly evident for both native and exotic species, as the mode and mean dispersion distance of seedlings were further from potential parent trees than seeds. The comparable intensity of Janzen‐Connell effects between native and exotic species suggests that the enemy escape hypothesis alone cannot explain the invasiveness of these exotics. Our study confirms the general importance of colonization processes in invasions, yet demonstrates how invasiveness can occur via divergent colonization strategies. Dispersal limitation of Acer platanoides and recruitment limitation of Ailanthus altissima will likely constitute some limit on their invasiveness in closed‐canopy forests.  相似文献   

18.
19.
Seed dispersal is crucial for the success and spread of alien plants. Herbivores often establish a dual relationship with plants: antagonist, through herbivory, and mutualist, through seed dispersal. By consuming plants, herbivores may disperse large amounts of seeds, and can facilitate the spread of alien plants. However, seed dispersal of alien plants by herbivores has been largely uninvestigated. I studied factors associated with dispersal of alien and native seeds by the three most important vertebrate herbivores in SW Australia: emus (Dromaius novaehollandia), western grey kangaroos (Macropus fuliginosus) and European rabbits (Oryctolagus cuniculus). Overall frequencies of alien and native seeds dispersed by these herbivores were determined by differences among them in (1) the plant groups they predominantly disperse, that differed in frequencies of aliens versus natives, and (2) the predominant dispersal of aliens or natives within those plant groups. Emus and kangaroos (natives) tended to disperse predominantly alien seeds within plant groups (defined by life forms, dispersal syndromes, and diaspore size), whereas rabbits (alien) tended to disperse predominantly natives. This agrees with the hypothesis that herbivores will use predominantly plants that have evolved in different areas, because of less effective defences against new enemies. Overall frequencies were consistent with this pattern in kangaroos and rabbits, but not in emus. Kangaroos dispersed mostly plant groups that were mainly aliens (herbaceous species and small and medium sized dispersal units and seeds), which together with their predominant use of aliens over natives within groups resulted in the highest overall frequency of alien seeds (73%). Rabbits were similar to kangaroos in the type of plants dispersed, but their predominant use of natives over aliens within groups contributed to an overall predominance of native seeds in their pellets (88%). Emus dispersed mostly plant groups that were mainly natives (e.g. woody species with big diaspores), resulting in low overall frequency of alien seeds (11%), despite their predominant use of aliens over natives within plant groups. Thus, the within-groups trend pointed to a facilitative role of native herbivores of plant invasions through seed dispersal, but was obscured by the different use by herbivores of plant groups with different frequency of aliens.  相似文献   

20.
Across taxa, individuals vary in how far they disperse, with most individuals staying close to their origin and fewer dispersing long distances. Costs associated with dispersal (e.g., energy, risk) are widely believed to trade off with benefits (e.g., reduced competition, increased reproductive success) to influence dispersal propensity. However, this framework has not been applied to understand variation in dispersal distance, which is instead generally attributed to extrinsic environmental factors. We alternatively hypothesized that variation in dispersal distances results from trade‐offs associated with other aspects of locomotor performance. We tested this hypothesis in the stream salamander Gyrinophilus porphyriticus and found that salamanders that dispersed farther in the field had longer forelimbs but swam at slower velocities under experimental conditions. The reduced swimming performance of long‐distance dispersers likely results from drag imposed by longer forelimbs. Longer forelimbs may facilitate moving longer distances, but the proximate costs associated with reduced swimming performance may help to explain the rarity of long‐distance dispersal. The historical focus on environmental drivers of dispersal distances misses the importance of individual traits and associated trade‐offs among traits affecting locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号