首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of sarcosine dehydrogenase and acid-nonextractable flavin in the inner matrix of mitochondria of rat liver are decreased in animals treated with triiodothyronine and are elevated in the mitochondria obtained from thyroidectomized animals. Administration of triiodothyronine does not affect the electron-transfer flavoprotein associated with the sarcosine dehydrogenase or the relative amounts of soluble and membrane-bound proteins of the mitochondria. In phosphate-washed mitochondria from either the controls or the triiodothyronine-treated rats, the O2 uptake equals the total of the [14C]formaldehyde and [β-14C]serine isolated as reaction products of the sarcosine-[14C]methyl group. In contrast to its restraint of sarcosine or choline oxidation in preparations capable of oxidative phosphorylation, ADP does not inhibit the oxidation of these substrates in mitochondria of rats given triiodothyronine.  相似文献   

2.
In rat liver mitochondria, swollen with phosphate and supplemented with NAD+, the oxidation of the methyl carbon of sarcosine to formate is enhanced by the addition of NADP+. No carbon dioxide is formed. Formaldehyde and serine, which are the only oxidation products of the methyl group in the absence of the pyridine nucleotides, are decreased by an amount equal to the formate produced. Carbon dioxide, as well as formate, is produced when the mitochondria are treated with EDTA, even without the addition of the pyridine nucleotides. When the mitochondria are exposed to pyrophosphate without added NAD+ and/or NADP+, all of the oxidized sarcosine-methyl can be recovered as formate, [3-C]serine, and carbon dioxide. Formaldehyde accumulates only if the system is supplemented with Mg2+. In the presence of NADP+ or the combined pyridine nucleotides, serine accumulation is depressed by an amount equal to the increase in carbon dioxide production. Both carbons of glycine and the 3-C of serine can also be oxidized to carbon dioxide in the pyrophosphate-treated mitochondria. The oxidation of the methyl carbon of S-adenosylmethionine to formaldehyde, [3-C]serine, formate, and carbon dioxide requires a whole homogenate supplemented with glycine. Neither exogenous formaldehyde nor formate is oxidized to carbon dioxide in any of the mitochondrial systems capable of converting sarcosine-methyl to carbon dioxide. Under conditions in which [N5,N10-14C-methylene]- and [N10-14C-formyl]tetrahydrofolate can be isolated as intermediate products of [14CH3]sarcosine, exogenous [N5,N10-14C-methylene]tetrahydrofolate can also be converted to [3-14C]serine, [14C]formate, and [14C]carbon dioxide.  相似文献   

3.
Rat heart mitochondria oxidizing pyruvate (in the presence of 20% as much malate) took up nearly the amount of oxygen required for complete oxidation to CO2. Thus pyruvate, a physiological substrate of the citrate cycle, is oxidized through the entire cycle in these mitochondria, and they seem suitable for study of regulation of integrated mitochondrial energy transduction. By addition of graded amounts of hexokinase or pyruvate kinase to the suspending medium (in the presence of excess glucose or phosphoenolpyruvate), a wide range of steady-state values of the ATPADP concentration ratio was obtained. At a constant concentration of phosphate, the steady-state rate of oxygen uptake by rat heart mitochondria oxidizing pyruvate was a function of the adenylate energy charge or of the ATPADP ratio, and relatively independent of the absolute concentrations of these nucleotides. The oxygen uptake rates typically spanned a range of about 20-fold. At very high values of the ATPADP ratio, the rate of oxygen uptake is much lower than the “state 4” rate seen after added ADP has been phosphorylated. This result suggests that “state 4” respiration, at least in these freshly prepared mitochondria, measures the rate at which ADP is made available by ATPase activity, rather than indicating uncoupling of electron transport from phosphorylation. The concentration of orthophosphate affected the rate of oxygen uptake and the pattern of response to the ATPADP ratio or the energy charge, but the effects did not seem interpretable in terms of the mass-action expression for hydrolysis of ATP, (ATPADP) (Pi.  相似文献   

4.
The oxidation of N-mono- and dimethyl-substituted toluidines and aniline by H2O2, catalyzed by horseradish peroxidase or metmyoglobin, produces organic free radicals, detectable by electron paramagnetic resonance spectroscopy at room temperature. The radical cation of N,N-dimethyl-p-toluidine was conclusively identified, but the other resolved EPR signals were assigned to radical cations of radical dimerization products, e.g., N,N,N′,N′-tetramethylbenzidine formed from N,N-dimethylaniline. The N-demethylase activities of metmyoglobin were found to be uniformly smaller than those of horseradish peroxidase, consistent with the much faster reaction of the latter hemeprotein with H2O2. Detection of the monomeric radical cation of N,N-demethyl-p-toluidine correlated with the largest rate of N-demethylation among this class of compounds. These findings emphasize the importance of radical stability (provided, for example, by the para methyl substituent) on subsequent competing reactions of the radical cation of the N-methyl substrate, i.e., one-electron oxidation leading to formaldehyde release or radical dimerization, which becomes more probable for the less stable radical intermediates. Attempts were made to correlate these results with data obtained for the O2NADPH-supported oxidation of these same substrates by liver microsomal cytochrome P-450. However, pronounced differences in physical state and kinetic properties of this heterogeneous, membrane-associated microsomal hemeprotein and the soluble “model” hemeprotein systems precluded firm conclusions concerning a radical mechanism of N-demethylation monooxygenase activities of microsomal fractions.  相似文献   

5.
The substrate-dependent O2 uptake by sycamore (Acer pseudoplatanus L.) cell mitochondria in the presence of ADP and limiting Pi concentrations has been measured. The Pi concentration for half-maximum O2 uptake rate was found to be in the range 20 to 50 micromolar for all the substrates tested. 31P NMR of intact sycamore cells indicated that the Pi concentration in the cytoplasm was in the range 5 to 6 millimolar, approximately 100-fold higher than the Pi concentration required for maximum O2 uptake rates by isolated mitochondria. When sycamore cells were transferred to a culture medium devoid of Pi, the cytoplasmic Pi concentration decreased from 6 to less than 3 millimolar, but the intact cell respiration remained practically constant for at least 4 days. These results strongly suggest that, in vivo, the respiration rate of sycamore cells is not limited by the quantity of Pi supplied to the mitochondria.  相似文献   

6.
In newborn rat liver, the adenine nucleotide content (ATP + ADP + AMP) of mitochondria increases severalfold within 2 to 3 h of birth. The net increase in mitochondrial adenines suggests a novel mechanism by which mitochondria are able to accumulate adenine nucleotides from the cytosol (J. R. Aprille and G. K. Asimakis, 1980, Arch. Biochem. Biophys.201, 564.). This was investigated further in vitro. Isolated newborn liver mitochondria incubated with 1 mM ATP for 10 min at 30 °C doubled their adenine nucleotide content with effects on respiratory functions similar to those observed in vivo: State 3 respiration and adenine translocase activity increased, but uncoupled respiration was unchanged. The mechanism for net uptake of adenine nucleotides was found to be specific for ATP or ADP, but not AMP. Uptake was concentration dependent and saturable. The apparent Km′s for ATP and ADP were 0.85 ± 0.27 mM and 0.41 ± 0.20 mM, respectively, measured by net uptake of [14C]ATP or [14C]ADP. The specific activities of net ATP and ADP uptake averaged 0.332 ± 0.062 and 0.103 ± 0.002 nmol/min/mg protein, respectively. ADP was a competitive inhibitor of net ATP uptake. If Pi was omitted from the incubations, net uptake of ATP or ADP was reduced by 51%. Either mersalyl or N-ethylmaleimide severely inhibited the accumulation of adenine nucleotides. Net ATP uptake was stoichiometrically dependent on MgCl2, suggesting that Mg2+ is accumulated along with ATP (or ADP). Uptake was energy dependent as indicated by the following results: Net AdN uptake (especially ADP uptake) was stimulated by the addition of an oxidizable substrate (glutamate) and inhibited by FCCP (an uncoupler). Antimycin A had no effect on net ATP uptake but inhibited net ADP uptake, suggesting that ATP was able to serve as an energy source for its own accumulation. If carboxyatractyloside was added to inhibit the exchange translocase, thereby preventing rapid access of exogenous ATP to the matrix, net ATP uptake was inhibited; carboxyatractyloside had no effect on ADP uptake. It was concluded that the net uptake of adenine nucleotides from the extramitochondrial space occurs by a specific transport process distinct from the classic adenine nucleotide exchange translocase. The accumulation of adenine nucleotides may regulate matrix reactions which are allosterically affected by adenines or which require adenines as a substrate.  相似文献   

7.
In the presence of oligomycin ADP inhibits the osmotic swelling of the nonenergized rat liver mitochondria in the NH4NO3 medium. With the energized mitochondria ADP enhances contraction of the mitochondria swollen in the NH4NO3 medium. Carboxyatractyloside and atractyloside abolish or prevent the effects of ADP. The direct measurements of the proton conductance of rat liver mitochondria shows that the inhibitory action of ADP + oligomycin on the H+ permeability does not depend on the energization of mitochondria. In these experiments the local anesthetic nupercaine and ADP additively inhibit the inner membrane conductance for protons, but carboxyatractyloside abolishes only the effect of ADP. In the presence of oligomycin ADP also inhibits the osmotic swelling of the nonenergized liver mitochondria in the KNO3 medium, and the energy-dependent swelling of rat liver mitochondria in the medium with K+ ions and Pi. The inhibition by ADP of the membrane passive permeability for K+ is also sensitive to carboxyatractyloside. It is concluded that rat liver mitochondria possess an ADP-regulated channel for H+ and K+. The properties of this pathway for protons and potassium ions favor the idea that ADP regulates the mitochondrial permeability via adenine nucleotide translocase. It is assumed that the adenine nucleotides carrier should operate according to the “gated pore” mechanism.  相似文献   

8.
The mitochondrial fraction isolated from durum wheat seedlings by differential centrifugation demonstrated antimycin A- or cyanide-insensitive O2 uptake. Further purification of this initial mitochondrial pellet using a linear Percoll (Pharmacia) density gradient separated the mitochondria into two bands of physiologically distinct activity. Based on the usual mitochondrial respiratory criteria of ADP/O and respiratory control values, these fractions were qualitatively similar to the crude pellet. However, we observed no antimycin A-insensitive O2 uptake in either gradient band. Antimycin A-insensitive O2 consumption could be restored to the upper gradient band of mitochondria by the addition of linoleic acid. This activity was inhibited either by salicylhydroxamic acid or propyl gallate, a known lipoxygenase inhibitor. Likewise, addition of linoleic acid to the crude mitochondrial pellet elicited a 4- to 5-fold increase in O2 uptake. This O2 consumption was insensitive to antimycin A and cyanide but was inhibited by either propyl gallate or salicylhydroxamic acid. Electron microscopic examination revealed that only the lower gradient band contained contamination-free mitochondria, which, in turn, lacked ability to oxidize linoleic acid. Antimycin A-insensitive O2 consumption in the differential centrifugation fraction from germinating durum wheat seedlings decreased over 64 hours of development.  相似文献   

9.
Mitochondria were isolated from the hepatopancreas of the Florida spiny lobster Panulirus argus using a high osmolarity medium containing 600 mm mannitol, 83 mm sucrose, 5 mm 4-morpholinepropanesulfonic acid, pH 7.6, 0.5% bovine serum albumin (BSA), and 1 mm EDTA. O2 uptake and Ca2+ transport were measured by electrode methods in similar media (plus 4 mm KPi, 3.3 mm MgCl2, and 0.67 mg/ml BSA, with 80 mm KCl replacing a portion of the osmotic support). Substrate-supported respiration was observed to be coupled to phosphorylation of ADP or uptake of Ca2+ ions. State 3 rates (nanogram atoms O × minute?1 × milligram protein?1 ± SEM (N)) were: 49.2 ± 3.9 (19), succinate; 30.9 ± 3.9 (6), dl-palmitoyl carnitine; 29.0 ± 2.7 (9), l-malate; 40.0 ± 2.3 (3), l-glutamate; 27.7 ± 2.2 (5), d-3-hydroxybutyrate; and 26.4 ± 2.4 (18), l-proline ± pyruvate. α-Glycerol phosphate was not oxidized. Ca2+ uptake driven by succinate oxidation proceeded with Ca:O ratios of 4.0 ± 0.2 (SEM). Hepatopancreas mitochondria were not uncoupled by Ca2+ uptake in excess of 1100 ng atoms × mg protein?1. Ca2+ efflux could be induced by ruthenium red, indicating the presence of an active Ca2+ cycle. These mitochondria may provide a favorable model system in which to study regulation of the Ca2+ cycle.  相似文献   

10.
Day DA  Hanson JB 《Plant physiology》1977,59(2):139-144
A study was made to determine conditions under which malate oxidation rates in corn (Zea mays L.) mitochondria are limited by transport processes. In the absence of added ADP, inorganic phosphate increased malate oxidation rates by processes inhibited by mersalyl and oligomycin, but phosphate did not stimulate uncoupled respiration. However, the uncoupled oxidation rates were inhibited by butylmalonate and mersalyl. When uncoupler was added prior to substrate, subsequent O2 uptake rates were reduced when malate and succinate, but not exogenous NADH, were used. Uncoupler and butylmalonate also inhibited swelling in malate solutions and malate accumulation by these mitochondria, which were found to have a high endogenous phosphate content. Addition of uncoupler after malate or succinate produced an initial rapid oxidation which declined as the mitochondria lost solute and contracted. This decline was not affected by addition of ADP or AMP, and was not observed when exogenous NADH was substrate. Increasing K+ permeability with valinomycin increased the P-trifluoromethoxy (carboxylcyanide)phenyl hydrazone inhibition. Kinetic studies showed the slow rate of malate oxidation in the presence of uncoupler to be characterized by a high Km and a low Vmax, probably reflecting a diffusion-limited process.  相似文献   

11.
The mechanism of light-induced O2 uptake by chromatophores and isolated P-870 reaction center complexes from Rhodospirillum rubrum has been investigated.The process is inhibited by o-phenanthroline and also by an extraction of loosely bound quinones from chromatophores. Vitamin K-3 restored the o-phenanthroline-sensitive light-induced O2 uptake by the extracted chromatophores and stimulated the O2 uptake by the reaction center complexes. It is believed that photooxidase activity of native chromatophores is due to an interaction of loosely bound photoreduced ubiquinone with O2. Another component distinguishable from the loosely bound ubiquinone is also oxidized by O2 upon the addition of detergents (lauryldimethylamine oxide or Triton X-100) to the illuminated reaction center complexes and to the extracted or native chromatophores treated by o-phenanthroline. Two types of photooxidase activity are distinguished by their dependence on pH.The oxidation of chromatophore redox chain components due to photooxidase activity as well as the over-reduction of these components in chromatophores, incubated with 2,3,5,6-tetramethyl-p-phenylenediamine (Me4Ph(NH2)2) or N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) (plus ascorbate) in the absence of exogenous electron acceptors, leads to an inhibition of the membrane potential generation, as measured by the light-induced uptake of penetrating phenyldicarbaundecaborane anions (PCB?) and tetraphenylborate anions. The inhibition of the penetrating anion responses observed under reducing conditions is removed by oxygen, 1,4-naphthoquinone, fumarate, vitamin K-3 and methylviologen, but not by NAD+ or benzylviologen. Since methylviologen does not act as an electron acceptor with the extracted chromatophores, it is believed that this compound, together with fumarate and O2, gains electrons at the level of the loosely bound ubiquinone. Data on the relationship between photooxidase activity and membrane potential generation by the chromatophores show that non-cyclic electron transfer from reduced Me4Ph(NH2)2 to the exogenous acceptors is an electrogenic process, whereas non-cyclic electron transfer from reduced TMPD is non-electrogenic.Being oxidized, Me4Ph(NH2)2 and TMPD are capable of the shunting of the cyclic redox chain of the chromatophores. Experiments with extracted chromatophores show that the mechanisms of the shunting by Me4Ph(NH2)2 and TMPD are different.  相似文献   

12.
Mitochondria isolated from pea leaves (Pisum sativum L. var Massey Gem) and purified on a linear sucrose density gradient were substantially free of contamination by Chl and peroxisomes. They showed high respiratory rates and good respiratory control and ADP/O ratios. Malate, glutamate, succinate, glycine, pyruvate, α-ketoglutarate, NADH, and NADPH were oxidized but little or no oxidation of citrate, isocitrate, or proline was detected. The oxidation of NADPH by the purified mitochondria did not occur via a transhydrogenase or phosphatase converting it to NADH. NADPH oxidation had an absolute requirement for added Ca2+, whereas NADH oxidation proceeded in its absence. In addition, oxidation of the two substrates showed different sensitivities to chelators and sulfhydryl reagents, and faster rates of O2 uptake were observed with both substrates than with either alone. This indicates that the NADPH dehydrogenase is distinct from the exogenous NADH dehydrogenase.  相似文献   

13.
Corn mitochondria show respiration-linked net accumulation of [3H]ADP in the presence of phosphate and magnesium, especially if the formation of ATP is blocked with oligomycin. Inhibition of ADP-ATP exchange by carboxyatractyloside also activates ADP accumulation, and addition of carboxyatractyloside or palmitoyl-coenzyme A to oligomycin-blocked mitochondria produces additional ADP uptake. With carboxyatractyloside the accumulated ADP is phosphorylated to ATP. With oligomycin, only a little ATP is formed. Millimolar concentrations of ADP are required for maximum uptake, and the Km (3.77 millimolar) for ADP translocation is independent of whether oligomycin or carboxyatractyloside is used. This is not true for ADP concentrations in the 0.05 to 0.25 millimolar range. Accumulated [3H]ADP rapidly exchanges with unlabeled AMP, ADP, or ATP, but not with other diphosphate nucleotides or 2 millimolar substrate anions. [3H]AMP is not accumulated, but [3H]ATP is accumulated to about one-half the extent of [3H]ADP. Tricarboxylate substrates inhibit ADP net uptake, and inhibition by citrate is competitive with Ki = 10 millimolar. The evidence suggests the presence of a pathway, carboxyatractyloside-insensitive and different from the translocase, which operates to maintain adenine nucleotides in the matrix.  相似文献   

14.
This study describes the O2 uptake characteristics of intact roots of Brachypodium pinnatum. In the presence of 25 mM salicylhydroxamic acid (SHAM), concentrations of KCN below 3.5 νM had no effect on the rate of root respiration, whereas in the absence of 25 mM SHAM a significant inhibition of approx. 18% was observed. This indicates that an O2-consuming reaction, not associated with the cytochrome pathway, the alternative pathway or the “residual component”, operates in the absence of any inhibitors in roots of B. pinnatum. We demonstrate here that this fourth O2-consuming reaction is mediated by a peroxidase. A peroxidase which catalyzed O2 reduction in the presence of NADH was readily washed from the roots of B. pinnatum. This peroxidase was stimulated by 5 mM SHAM, whereas ascorbic acid, catalase, catechol, gentisic acid, low concentrations potassium cyanide (3.5 μM), sodium azide, sodium sulfide, superoxide dismutase and high concentrations SHAM (25 mM) inhibited this reaction. Except for high concentrations of SHAM and concentrations of KCN higher than approx. 3.5 μM, these effectors could not be used to inhibit the peroxidase-mediated O2 uptake in intact roots of B. pinnatum. Concentrations of SHAM below 10 mM stimulated O2 uptake up to 15% of the control rate, depending on concentration, whereas 25 mM SHAM inhibited O2 uptake by 35%. The stimulation at low concentrations resulted from a SHAM-stimulated peroxidase activity, whereas 25 mM SHAM completely inhibited both the peroxidase-mediated O2 uptake and the activity of the alternative pathway. A method is presented for determining the relative contributions of each of the four O2-consuming reactions, i.e. the cytochrome pathway, the alternative pathway, the “residual component” and the peroxidase-mediated O2 uptake. The peroxidase-mediated O2 uptake contributed 21% to the total rate of oxygen uptake in roots of B. pinnatum, the cytochrome pathway contributed 41%, the alternative pathway 14% and the “residual component” 24%.  相似文献   

15.
Among various metal ions of physiological interest, Cu2+ is uniquely capable of catalyzing the oxidation of NADH by H2O2. This oxidation is stimulated about fivefold in the presence of imidazole. A similar activating effect is found for some imidazole derivatives (1-methyl imidazole, 2-methyl imidazole, andN-acetyl-L-histidine). Some other imidazole-containing compounds (L-histidine,L-histidine methyl ester, andL-carnosine), however, inhibit the Cu2+-catalyzed peroxidation of NADH. Other chelating agents such as EDTA andL-alanine are also inhibitory. Stoichiometry for NADH oxidation per mole of H2O2 utilized is 1, which excludes the possibility of a two-step oxidation mechanism with a nucleotide free-radical intermediate. About 92% of the NADH oxidation product can be identified as enzymatically active NAD+. D2O, 2,5-dimethylfuran, and 1,4-diazabicyclo [2.2.2]-octane have no significant effect on the oxidation, thus excluding1O2 as a mediator. Similarly, OH· is also not a likely intermediate, since the system is not affected by various scavengers of this radical. The results suggest that a copper-hydrogen peroxide intermediate, when complexed with suitable ligands, can generate still another oxygen species much more reactive than its parent compound, H2O2.  相似文献   

16.
Formation of the CO compound has been studied in intact mitochondria, submitochondrial particles and isolated cytochrome oxidase. The reaction requires the prior reduction of both cytochrome a3 and one other single-electron acceptor. It is inferred that the second acceptor is the “invisible” copper which is undetectable by both optical and spin resonance spectroscopy. The overall process can be viewed as two single electron steps plus a ligand binding reaction. At high concentrations of CO, when titrations are performed at oxidation-reduction potentials significantly above the midpoints of either cytochrome a3 or “invisible” copper, appearance of the CO compound follows a strict n = 2 (2-electron) relationship. Its midpoint potential is also dependent on the prevailing concentration of CO and is increased by approx. 30 mV for each tenfold increase in the level of CO. At redox potentials approaching the midpoints of cytochrome a3 or “invisible” copper, significant deviations from n = 2 behavior are apparent which are readily detectable experimentally using low CO concentrations.A mathematical analysis of this model is presented and the oxidation-reduction properties of the CO compound are utilized to determine the midpoint potential of the “invisible” copper. This value is estimated to be 340 ± 10 mV at pH 7.8, independent of pH and the prevailing sol[ATP][ADP] × [P1] ratio.By analogy with the observations on CO binding, the primary intermediate in the oxidase reaction with oxygen is concluded to be a bridged a32+-O2-Cu1+ complex. The initial reduction of molecular oxygen can then proceed via a thermodynamically favorable two-electron step to form a bridged peroxide intermediate. Subsequent reduction to water may later occur by way of two single-electron steps or one two-electron step.  相似文献   

17.
Imidazoles or imidazoles substituted in the 2 or 4(5) position but with the ring nitrogen free, give a positive Pauly reaction. N-Methylimidazole does not react. In the presence of formaldehyde, all imidazole compounds give a negative Pauly reaction. In agreement with nmr studies, it is concluded that formaldehyde reacts with the imidazole ring nitrogen in acid solution to form N-hydroxymethyl derivatives.The Pauly color yield of various proteins (chymotrypsin, TPCK-chymotrypsin, lysozyme, ribonuclease, and reduced ribonuclease) is reduced 90–95% when the reaction is performed in the presence of formaldehyde. The color yield in water is essentially accounted for by the known reactive histidine and tyrosine content. In the presence of formaldehyde the color yield can be interpreted as arising from the known tyrosine content. It is therefore concluded that the histidine residues of the proteins examined have reacted with formaldehyde to form N-hydroxymethyl derivatives.In contrast to the Pauly color yield of chymotrypsin (AM, 52 720) which can be accounted for by the contribution of its two histidine and three reactive tyrosine residues, the color yield of TPCK-chymotrypsin (AM, 47 685) is higher than would be expected on the basis of the reported site of reaction of TPCK with chymotrypsin. The experimental molar extinction coefficient should be close to that calculated (AM, 31 300) for its presumed one reactive histidine and three tyrosine residues. That it is not is in agreement with a previous report from our laboratories suggesting that His-57 is not the only site of reaction of TPCK with chymotrypsin.  相似文献   

18.
Cholesterol oxidase (EC 1.1.3.6, Brevibacterium sp.), which catalyzes the reaction: cholesterol + O2Δ4-cholestenone + H2O2, has no effect on the cholesterol of intact (human) erythrocytes and of “resealed” ghosts, when it is present only outside these ghosts. The cholesterol of “leaky” ghosts, of “resealed” ghosts with enzyme trapped within, and of “inside-out” vesicles, was completely oxidized. This pattern indicates that the inner (cytoplasmic) membrane surface must be exposed to the enzyme for the reaction to occur, and that outer surface cholesterol only becomes reactive after the membrane has been degraded by the oxidation of inner surface cholesterol. The enzymatic oxidations followed monotonic first-order kinetics, and hence gave no evidence to support the two states of cholesterol in the membrane that had been postulated earlier from studies on the plasma lipoprotein extraction of cholesterol from the membrane.  相似文献   

19.
We measured oxygen uptake in 3- to 13-day-old Heliothis virescens (tobacco budworm) larvae. The “test” group was infected with cytoplasmic polyhedrosis virus (CPV) while the “control” group was not. The healthy budworms had an average oxygen uptake of 7.64 μl of O2/mg body weight, while those infected with CPV had an average uptake of 47.11 μl of O2/mg body weight/hr. The weights of larvae from the two groups were likewise recorded. Budworms from the “control” group showed an average weight of 186.9 mg, while larvae infected with CPV had an average weight of 18.3 mg.  相似文献   

20.
Some Reactions of Isolated Corn Mitochondria Influenced by Juglone   总被引:1,自引:0,他引:1  
The effects of juglone on the uptake of O2 by excised corn roots (Zea mays L., Wf9 cms- T × M14) and isolated corn mitochondria arc reported. The O2 uptake by excised corn roots, as measured by an O2 electrode, was inhibited more than 90% after a one-hour treatment of 500 μM juglone. Lesser inhibitions were observed with 50 μM and 250 μM juglone. In a KC1 reaction medium in the absence of inorganic phosphate (Pi), juglone stimulated the rate of O2 uptake by isolated mitochondria oxidizing NADH, succinate, or malate + pyruvate. In the presence of Pi, juglone concentrations of 3 μM and greater inhibited the state 3 oxidation rates of succinate and malate + pyruvate, lowered respiratory control and ADP/O ratios obtained from the oxidation of NADH, malate + pyruvate, or succinate, and reduced the coupled deposition of calcium phosphate within isolated mitochondria driven, by the oxidation of malate + pyruvate. The inhibition of state 3 O2 uptake by isolated mitochondria, an oxidative state in which electron transfer is coupled to ATP production, is seen to correlate with the inhibition affected by juglone when applied to tissues in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号