首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Drosophila melanogaster, one of the most derived species among holometabolous insects, undifferentiated imaginal cells that are set-aside during larval development are thought to proliferate and replace terminally differentiated larval cells to constitute adult structures. Essentially all tissues that undergo extensive proliferation and drastic morphological changes during metamorphosis are thought to derive from these imaginal cells and not from differentiated larval cells. The results of studies on metamorphosis of the Drosophila tracheal system suggested that large larval tracheal cells that are thought to be terminally differentiated may be eliminated via apoptosis and rapidly replaced by small imaginal cells that go on to form the adult tracheal system. However, the origin of the small imaginal tracheal cells has not been clear. Here, we show that large larval cells in tracheal metamere 2 (Tr2) divide and produce small imaginal cells prior to metamorphosis. In the absence of homothorax gene activity, larval cells in Tr2 become non-proliferative and small imaginal cells are not produced, indicating that homothorax is necessary for proliferation of Tr2 larval cells. These unexpected results suggest that larval cells can become imaginal cells and directly contribute to the adult tissue in the Drosophila tracheal system. During metamorphosis of less derived species of holometabolous insects, adult structures are known to be formed via cells constituting larval structures. Thus, the Drosophila tracheal system may utilize ancestral mode of metamorphosis.  相似文献   

2.
Following tissue damage the immune response, including inflammation, has been considered an inevitable condition to build the host defense against invading pathogens. The recruitment of innate immune leukocytes to injured tissue is observed in both vertebrates and invertebrates. However, it is still not conclusive whether the inflammatory response is also indispensable for the wound healing process by itself, in addition to its role in microbial clearance. In this study we determine the requirement of innate immune cells, both hemocytes and fat body cells, in Drosophila imaginal disc regeneration. We investigate wound healing and regenerative cell proliferation of damaged imaginal discs under immunodeficient conditions. To delay development of Drosophila at matured third instar larval stage we used a sterol-mutant erg2 knock-out yeast strain in the medium. This dietary-controlled developmental arrest allowed us to generate larvae free of immune cells without interfering with their larval development. In addition, this approach allowed uncoupling regenerative cell proliferation of damaged discs from their normal developmental growth. We furthermore examined the regenerative cell proliferation of fragmented imaginal discs by transplantation into host flies deficient of immune cells. We demonstrate that the damaged/fragmented discs in immune cells deficient conditions still exhibit regenerative cell proliferation comparable to those of control samples. These results suggest that recruitment of immune cells is not a prerequisite for the regenerative growth of damaged imaginal discs.  相似文献   

3.
Drosophila imaginal discs are monolayered epithelial invaginations that grow during larval stages and evert at metamorphosis to assemble the adult exoskeleton. They consist of columnar cells, forming the imaginal epithelium, as well as squamous cells, which constitute the peripodial epithelium and stalk (PS). Here, we uncover a new morphogenetic/cellular mechanism for disc eversion. We show that imaginal discs evert by apposing their peripodial side to the larval epidermis and through the invasion of the larval epidermis by PS cells, which undergo a pseudo-epithelial-mesenchymal transition (PEMT). As a consequence, the PS/larval bilayer is perforated and the imaginal epithelia protrude, a process reminiscent of other developmental events, such as epithelial perforation in chordates. When eversion is completed, PS cells localize to the leading front, heading disc expansion. We found that the JNK pathway is necessary for PS/larval cells apposition, the PEMT, and the motile activity of leading front cells.  相似文献   

4.
The salivary gland of adult Calliphora erythrocephala is a tubular structure composed of secretory, reabsorptive, and duct regions. Development of these structures has been followed during the six days of larval and ten days of pupal growth. Two small groups of imaginal cells located at the junction between larval gland and duct give rise to the adult gland. These presumptive adult cells divide during all larval stages and appear to be functional components of the larval gland. Shortly after pupation, the larval gland breaks down and the imaginal cells proliferate rapidly, forming sequentially the duct, reabsorptive and secretory regions. Proliferating regions of the developing gland are frequently encrusted with haemocytes. As it elongates the gland establishes intimate contacts first with the basement membrane of the degenerating larval gland, later with an epithelial layer surrounding the main dorsal tracheal trunks, and then with the gut. Cell division continues until about five days after pupation, bu t the gland is unable to secrete fluid in response to 5-hydroxytryptamine stimulation until two hours after the adult fly emerges. The Golgi complex appears to be involved in forming the highly folded membranes of the canaliculi in the secretory region. Presumptive adult salivary gland cells appear to increase in number logarithmically from the time of hatching of the larva until five days after pupation. This contrasts with the development of classical imaginal discs, in which cell division ceases prior to pupation.  相似文献   

5.
Summary Half-way through the larval period in Dacus tryoni, the fat body cells begin to accumulate protein in the form of granules. Early in the pupal period, both the fat body cells and oenocytes become free in the body cavity. Meanwhile, an imaginal generation of hypodermal cells, while in the process of displacing the larval hypodermis, gives rise to an imaginal generation of oenocytes. Soon after, imaginal fat body cells also appear. A few days after emergence, the larval fat body cells and oenocytes disintegrate and their imaginal equivalents expand to fill the body cavity.This paper also describes the ultrastructure of the larval and imaginal fat body cells and of the imaginal oenocyte. In all three, tubular invaginations of the plasma membrane occupy the peripheral cytoplasm. At most stages, the fat body cells contain a considerable quantity of slightly distended, rough endoplasmic reticulum, which suggests that when these cells are not sequestering protein, they are secreting it into the blood. The imaginal oenocytes are packed with smooth endoplasmic reticulum, which supports other evidence that they participate in the synthesis of cuticular wax.For assistance with the electron microscopy, I thank Mr. Tony Webber and Miss Ann Miller of the Electron Microscopy Unit at Sydney University. For the loan of some sectioned material, I am grateful to Dr. D. T. Anderson.  相似文献   

6.
Lethal mutations which cause imaginal disc abnormalities in Drosophila melanogaster identify genes whose function is necessary for normal disc development, and these mutant genes may be used as probes of the role of their wild-type alleles in normal development. It is crucial to the interpretation of the disc phenotype of such mutants to know which abnormalities are autonomous (caused by expression of the mutant gene in imaginal cells) and which are nonautonomous (indirectly caused, for example, by expression of the mutant gene in larval cells). We chose for study l(3)c21R (3-67.8), a late-larval lethal mutation with a complex phenotype, to test the adequacy of available techniques for assessing autonomy. We employed surgical and genetic techniques to determine the imaginal cell autonomy of the defects in cell viability, growth, and differentiation in c21R discs. The imaginal cell viability defect is nonautonomous. The disc growth and differentiation defects are autonomous; however, in genetic mosaics these two autonomous defects are separable. These results show that c21R belongs to the class of mutations which affect both larval and imaginal cells. In combination, the available methods were adequate to resolve the issue of autonomy in this complex case. However, in isolation several of the methods could have led to incomplete or misleading interpretations. This emphasizes that to analyze any developmental mutant it is necessary to examine the issue of autonomy from several points of view.  相似文献   

7.
The neural phenotype of an imaginal disc degenerate mutant l(1)d deg-3 was studied in histological sections. The mutant larvae showed severe abnormalities in the imaginal neural development. Gynandromorphs, which are composed of genetically mutant and nonmutant cells, were generated and analyzed as late larvae. The results of mosaic analysis were consistent with l(1)d deg-3 gene acting autonomously in the imaginal disc and imaginal neural cells. The optic lobe development patterns observed in the larval mosaics provided evidence for an eye disc-optic lobe interaction during the late third instar larval stage.  相似文献   

8.
Drosophila imaginal discs, the primordia of the adult fly appendages, are an excellent system for studying developmental plasticity. Cells in the imaginal discs are determined for their disc-specific fate (wingness, legness) during embryogenesis. Disc cells maintain their determination during larval development, a time of extensive growth and proliferation. Only when prompted to regenerate do disc cells exhibit lability in their determined identity. Regeneration in the disc is mediated by a localized region of cell division, known as the regeneration blastema. Most regenerating disc cells strictly adhere to their disc-specific identity; some cells however, switch fate in a phenomenon known as transdetermination. Similar regeneration and transdetermination events can be induced in situ by misexpression of the signaling molecule wingless. Recent studies indicate that the plasticity of disc cells during regeneration is associated with high morphogen activity and the reorganization of chromatin structure. Here we provide both a historical perspective of imaginal disc transdetermination, as well as discuss recent findings on how imaginal disc cells acquire developmental plasticity and multipotency. We also highlight how an understanding of imaginal disc transdetermination can enhance an understanding of developmental potency exhibited by stem cells.  相似文献   

9.
Summary The present investigation analyzes intercellular junctions in tissues with different developmental capacities. The distribution of junctions was studied inDrosophila embryos, in imaginal disks, and in cultures of disk cells that were no longer able to differentiate any specific pattern of the adult epidermis.The first junctions —primitive desmosomes andclose membrane appositions — already appear in blastoderm.Gap junctions are first detected in early gastrulae and later become more and more frequent.Zonulae adhaerentes are formed around 6 h after fertilization, whileseptate junctions appear in the ectoderm of 10-h-old embryos.Inwing disks of all stages studied (22–120 h), three types of junctions are found: zonulae adhaereentes, gap junctions, and septate junctions. Gap junctions, which are rare and small at 22 h, increase in number and size during larval development. The other types of junctions are found between all cells of a wing disk throughout development.All types of junctions that are found in normal wing disks are also present in theimaginal disk tissues cultured in vivo for some 15 years and in thevesicles of imaginal disk cells grown in embryonic primary cultures in vitro. However, gap junctions are smaller and in the vesicles less frequent than in wing disks of mature larvae.Thus gap junctions, which allow small molecules to pass between the cells they connect, are present in the early embryo, when the first developmental decisions take place, and in all imaginal disk tissues studied, irrespective of whether or not these are capable of forming normal patterns.  相似文献   

10.
The temperature‐dependent development of the European larch bark beetle, Ips cembrae, was studied under long‐day conditions L:D 16:8 at three temperature regimes, 15°C, 20°C and 25°C, using the sandwich plate method. By observing the individual developmental progress, we calculated the developmental times and lower developmental thresholds of one entire generation and various ontogenetic stages. The mean developmental time of one generation was about 120, 64 and 37 days at 15°C, 20°C and 25°C, respectively. The egg stage comprised about 9% of the total development or about 16% of the pre‐imaginal development. The larval stages took about 39% of the entire and about 66% of the pre‐imaginal development. The pupal stage needed about 11% of the total or about 18% of the pre‐imaginal development. The lower developmental threshold for one generation was 11.2°C. The egg stage had the highest lower developmental threshold of 12.0°C, the pupa the lowest of 9.8°C and the total larval stages showed a value of 11.2°C. The thermal requirements for I. cembrae have never been studied in detail before. The results will be a valuable contribution for monitoring and risk assessment models to estimate the beetle's phenology and its potential impacts on forest ecosystems under changing climate conditions.  相似文献   

11.
The development of the imaginal abdomen of Drosophila melanogaster   总被引:11,自引:0,他引:11  
The development of the imaginal Drosophila melanogaster was investigated by an analysis of clones of cells marked by somatic crossing-over. The results showed that each abdominal half tergite is initiated by about 11 cells which fail to divide during late embryonic and larval stages. Cell division commences only at the time of pupariation, and continues for the next 32 hr. The spatial pattern of marked clones indicated that each tergite consists of a left and right side—marked cells do not cross the midline. Twin spots were examined and indicated that two daughter cells are aligned preferentially in the transverse orientation. These results are contrasted to data obtained for other imaginal anlage, particularly with regard to the time of cessation of cell division.  相似文献   

12.
Summary Wild-type nuclei from eggs ofDrosophila melanogaster at various developmental stages and from different regions of the egg—cleavage nuclei, pole nuclei from preblastoderm, and lateral nuclei from syncytial blastoderm—were singly implanted into unfertilizedy w sn 3 lz 50e eggs to determine their developmental potencies.All three types of transplanted nuclei were almost equally effective in initiating development of unfertilized eggs. Development was arrested in one of five critieal embryonic stages or in one of the three larval instars. The frequency of individuals reaching a distinct stage was approximately the same for all three types of donor nuclei. The stage-specific pattern of defects was independent of the type of nucleus transplanted.The deviations from normal development were broadly similar to those seen in controls developing from fertilized eggs which had only been punctured or into which cytoplasm had been injected. Many defective embryos also occurred in these control experiments. These and other observations indicate that a large proportion of irregularly developed individuals found after nuclear transfer can be ascribed to loss of egg material, disturbances in the internal organization of the egg during nuclear implantation, and the difficulty the implanted nucleus has in adjusting to the autonomous processes within the egg, such as the formation and migration of cytoplasmic islands.Some of the defective embryos and larvae originating from nuclear transfer were implanted into adult hosts. After culture for 14 days the early embryonic stages had formed several larval structures, and the late embryonic and larval stages had developed all larval organs. The proliferated imaginal primordia of thesein vivo cultured embryos and larvae, as well as the imaginal disks of the third instar larva, were then implanted into larval hosts with which they passed through metamorphosis and differentiated into imaginal structures. All three types of donor nuclei were capable of producing all adult structures derivedin situ from imaginal disks. The phenotype of these structures waswild-type, thus demonstrating their origin from the transplanted nuclei.The problem as to why not all transplanted nuclei initiated development, and why development after nuclear transplantation was arrested at the third larval instar, at the latest, is discussed.This article is dedicated to Professor Friedrich Seidel on the occasion of his 75th birthday.  相似文献   

13.
Morphological diversity of leg appendages is one of the hallmarks of developmental evolution. Limbs in insects may develop either from their embryonic prototypes or from imaginal discs harbored inside the larva. Bombyx mori (B. mori), a Lepidopteran insect, develops adult wings from larval wing imaginal discs. However, it has been debated whether the adult legs of B. mori arise from imaginal discs or from the larval legs. Here we addressed how the larval legs relate to their adult counterparts. We present the morphological landmarks during early leg development. We used expression of developmental genes like Distalless and extradenticle to mark leg primordia. Finally, we employed classical excision approach to develop a fate map of the adult leg. Excision and ablation of thoracic legs along proximo-distal axis at various times during larval development resulted in the loss of corresponding adult leg segments. Our data suggest that B. mori legs develop from larval appendages rather than leg imaginal discs.  相似文献   

14.
 More than 50 genes have been identified in Drosophila by loss-of-function mutations that lead to overgrowth of specific tissues. Loss-of-function mutations in the lethal giant larvae, discs large, or brain tumor genes cause neoplastic overgrowth of larval brains and imaginal discs. In the present study, the growth and metastatic potential of tumors resulting from mutations in these genes were quantified. Overgrown brains and imaginal discs were transplanted into adults and β-galactosidase accumulation was used as a marker to identify donor cells. Mutations in these three genes generated tumors with similar metastatic patterns. For brain tumors, the metastatic index (a measure we defined as the fraction of hosts that acquired secondary tumors normalized for the amount of primary tumor growth) of each of the three mutants was similar. Analysis of cell proliferation in mutant brains suggests that the tumors arise from a population of several hundred cells which represent only 1–2% of the cells in third instar larval brains. For imaginal disc tumors from lethal giant larvae and brain tumor mutants, it is shown for the first time that they can be metastatic and invasive. Primary imaginal disc tumors from lethal giant larvae and brain tumor mutants formed secondary tumors in 43 and 53% of the hosts, respectively, although the secondary tumors were, in general, smaller than the secondary tumors derived from primary brain tumors. Received: 18 August 1997 / Accepted: 16 October 1997  相似文献   

15.
The substrate specificities of aldehyde and pyridoxal oxidases in Drosophila melanogaster have been determined with a variety of aliphatic and aromatic aldehydes. This analysis has led to the discovery that 2,4,5-trimethoxy-benzaldehyde is a specific substrate for pyridoxal oxidase, as based on the histochemical distribution of oxidase activity, the absence of enzymatic activity in the lpo 1strains, and the dosage dependence on the number of lpo +genes present. The tissue-specific localization of aldehyde oxidase (AO) and pyridoxal oxidase (PO) in the larval and adult structures showed that AO was present in all the major internal organs of the larvae and adults, including brain, imaginal discs, Malpighian tubules, digestive system, and reproductive structures. Pyridoxal oxidase is present in many of the same structures which possess AO, but is missing from the cardia, crop, imaginal discs, ovarian follicle cells, paragonia, pericardial cells, and wreath cells. The only structure which possesses PO but lacks AO is the larval salivary gland. These histochemical differences in AO and PO distribution were also confirmed by enzymatic analysis of the activities present in homogenates of ovaries, paragonia, and salivary glands. The general pattern of enzyme expression appears to be established during embryogenesis and maintained throughout the life of the individual.This work was supported by NIH Grants AG01975 and GM27866.This paper is dedicated to Professor Donald F. Poulson, Yale University, a pioneer in Drosophila developmental genetics.  相似文献   

16.
The regulation of body size in animals involves mechanisms that terminate growth. In holometabolous insects growth ends at the onset of metamorphosis and is contingent on their reaching a critical size in the final larval instar. Despite the importance of critical size in regulating final body size, the developmental mechanisms regulating critical size are poorly understood. Here we demonstrate that the developing adult organs, called imaginal discs, are a regulator of critical size in larval Drosophila. We show that damage to, or slow growth of, the imaginal discs is sufficient to retard metamorphosis both by increasing critical size and extending the period between attainment of critical size and metamorphosis. Nevertheless, larvae with damaged and slow growing discs metamorphose at the same size as wild-type larvae. In contrast, complete removal of all imaginal tissue has no effect on critical size. These data indicate that both attainment of critical size and the timely onset of metamorphosis are regulated by the imaginal discs in Drosophila, and suggest that the termination of growth is coordinated among growing tissues to ensure that all organs attain a characteristic final size.  相似文献   

17.
Summary Juvenile hormone III content and ecdysteroid titer were analyzed for larval and pupal development of the stingless bee,Scaptotrigona postica depilis. Castespecific differences in juvenile hormone III content were detected at three developmental phases: at the transition from the fourth to the fifth larval stadium, in the spinning phase of the fifth larval stadium, and shortly after the imaginal moult. During the fifth larval stadium, juvenile hormone content closely reflects corpora allata activity. Juvenile hormone synthesis may thus be responsible for the elevated hormone titer in spinning-phase queen larvae, a phase of known sensitivity for induction of queen characters by exogenous juvenile hormone. For ecdysteroids, two phases of caste-specific differences were found: in the pre-pupal phase, and shortly after the imaginal moult. In both periods the titer in queens is distinctly higher compared to workers.Abbreviations Im imago 1 day after eclosion - L3, L4, L5 larval instars 3, 4, and 5 - L5F1, L5F2 substages of feeding phase in fifth larval instar - L5S1, L5S2, L5S3 substages of spinning phase in fifth larval instar - PP1, PP2 substages of prepupal phase - Pw white eyed pupa - Pp pink eyed pupa - Pr red eyed pupa - Pd dark eyed pupa - Pdl, Pdm, Pdd dark eyed pupa with progressive tanning of cuticle - RIA radioimmunoassay  相似文献   

18.
Hou L  Wang JX  Zhao XF 《Amino acids》2011,40(3):953-961
Midgut remodeling is a complex physiological process in holometabolous insects. During midgut remodeling, the larval midgut is decomposed by apoptosis or autophagy during metamorphosis, and the degraded larval midgut is partially absorbed as nutrients by the imaginal midgut for its formation. The molecular mechanism involved in this process is not clear. Here, we found that a Rab protein, which we have named HaRab32, is related to the organogenesis of insect imaginal midgut. Results show that HaRab32 is up-regulated in epidermis and midgut during metamorphosis. Its expression could be up-regulated by 20E. Immunohistochemistry shows Rab32 is distributed in the epithelium of the imaginal midgut during metamorphosis. Knockdown of HaRab32 by RNA interference disturbs the formation of the imaginal midgut. These data imply HaRab32 plays important roles in midgut remodeling by participating in the imaginal midgut formation.  相似文献   

19.
Lola Margulies 《Genetica》1972,43(2):207-222
Drosophila melanogaster larvae of a wild-type and a mutant stock, cultured in an axenic, chemically defined medium, were treated for one day with different concentrations of actinomycin D at different stages of development. Phenocopies affecting various organs of the adult occurred in different frequencies and in different patterns depending on the age at treatment. Assuming that the induced phenocopies were due primarily to the inhibition of DNA-dependent RNA synthesis by actinomycin D, the differential phenocopy effect indicates that: (1) Many genes which affect the differentiation of imaginal discs are activated in the third larval instar. (2) The developmental timing of gene activation in the third instar differs for various genes within a imaginal disc and in different imaginal discs.Submitted in partial fulfillment of the requirements for the Ph. D. degree. Supported by U.S. Public Health Service Grant GM1 1537 to I. H. Herskowitz.  相似文献   

20.
Flow cytometric analyses of imaginal disc and brain nuclei of Drosophila melanogaster have been made throughout the third larval instar. In wing, haltere, and leg discs the proportion of cells in the G2M phase of the cell cycle (tetraploid cells) increases with larval age. In contrast, in the eye disc and in brain the proportion of tetraploid cells, already low at the outset of the instar, declines further. Measurement of growth rates for disc and brain tissue during the same developmental period was carried out by the cell counting procedure of Martin (1982). Our results are consistent with the conclusion that imaginal discs grow exponentially with an apparent doubling time of 5–10 hr from the resumption of cell division (in the first or second larval instar) until about 95 hr, when the apparent doubling time increases. Cell numbers increase until at least 5 hr after formation of white prepupae (122 hr), but during the preceding 10 hr the rate of increase is low. Thus, for wing and leg discs, but not for the eye disc and brain, the declining growth rate is associated with an increase in the proportions of tetraploid cells. In conjunction with cell counts and flow cytometry, fluorometric determination of disc DNA content at 112 hr indicated that the diploid DNA content of imaginal disc nuclei is 0.45 pg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号