首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The initiation of DNA replication in T lymphocytes appears to be regulated by two distinct activities: one associated with proliferation which mediates initiation, and another associated with quiescence which blocks initiation. Activated lymphocytes and proliferating lymphoid cell lines produce an activity, termed ADR, which can initiate DNA replication in isolated, quiescent nuclei. ADR is heat-labile, has protease activity or interacts closely with a protease, and is distinct from the DNA polymerases. ADR activity is absent in quiescent lymphocytes and appears in mitogen-stimulated lymphocytes after IL-2 binding. The generation of active ADR appears to be mediated by phosphorylation of a precursor which is present in resting cells. Nuclei from mitogen-unresponsive lymphocytes fail to initiate DNA replication in response to ADR, of potential importance in the age-related decline of immunity. Quiescent lymphocytes lack ADR and synthesize an ADR-inhibitory activity. The ADR inhibitor is a heat-stable protein which suppresses the initiation of DNA synthesis, but is ineffective at suppressing elongation once DNA strand replication has begun. Nuclei from several neoplastic cell lines fail to respond to the ADR inhibitor, which may play a role in the continuous proliferation of these cells. At least one of these neoplastic cell lines produces both ADR and an inhibitory factor. These findings suggest that the regulation of proliferation is dependent on the balance between activating and inhibitory pathways.  相似文献   

2.
Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes.  相似文献   

3.
Cytoplasmic extracts, prepared from continuously proliferating lymphoblastoid cells, as well as mitogen-activated normal lymphocytes, contain an extractable factor capable of inducing DNA synthesis in isolated quiescent nuclei. This factor is not detectable in resting cells. It is nondialyzable, precipitable by 30-50% saturated ammonium sulfate, and inactivated by trypsin. It is heat sensitive, but stable to cold and lyophilization. The molecular weight of the factor is greater than 100,000. This cytoplasmic activator of nuclear DNA replication is not released from the cell, and has no effect on intact cells. This suggests that it serves as an intracellular mitogenic signal in replicating cells.  相似文献   

4.
We have shown previously that cytoplasmic extracts from actively dividing lymphoid cells are capable of inducing DNA synthesis in isolated nuclei. One of the factors involved in this activity, ADR, appears to be a greater than 90 kDa heat-labile protease. Cytoplasmic extracts prepared from nonproliferating lymphocytes express little to no ADR activity. However, ADR activity can be generated in these extracts by brief exposure to a membrane-enriched fraction of spontaneously proliferating, leukemic human T lymphoblastoid (MOLT-4) cells. This suggests that ADR activity is present in the resting cytoplasm in an inactive or precursor form. This in vitro generation of ADR activity can be inhibited in a dose-dependent manner by the isoquinolinesulfonamide derivative, H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride), an inhibitor of both cyclic adenosine monophosphate (cAMP)-dependent protein kinases and protein kinase C (PKC). However, more specific inhibitors of cAMP-dependent protein kinases, including N-[( 2-methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8) and N-(2-gua-nidinoethyl)-5-isoquinolinesulfonamide (HA-1004), had little to no effect on the in vitro generation of ADR activity. Furthermore, membranes from MOLT-4 cells depleted of PKC by long-term exposure (24 h) to phorbol esters and calcium ionophores were unable to induce ADR activity in resting peripheral blood lymphocytes extracts. The results of these studies suggest 1) ADR activity is present in resting cell cytoplasm in an inactive or precursor form; and 2) ADR activity can be induced in this resting cytoplasm through a mechanism involving a membrane-associated protein kinase, possibly PKC. The ability of alkaline phosphatase to deplete the activity of preformed ADR suggests the possibility that ADR itself is phosphoprotein.  相似文献   

5.
Proliferating cell nuclear antigen (PCNA) is expressed in the nuclei of proliferating cells, but is not detected in resting cells. The kinetics of PCNA expression suggest that it is associated with a phase preceding active DNA synthesis. DNA synthesis is under cytoplasmic control, and there is a cytoplasmic protein, ADR (activator of DNA replication), that induces DNA synthesis in isolated quiescent nuclei. We now report that a human antibody preparation monospecific for PCNA, but not two monoclonal antibodies directed against different epitopes on PCNA, can inhibit the ability of ADR to induce DNA synthesis in isolated quiescent nuclei. This effect is not due to inhibition of DNA polymerase alpha activity. Thus, the anti-PCNA antibody exerts its effect either by directly influencing the initial interaction of ADR with the nucleus, or by inhibiting subsequent synthetic events.  相似文献   

6.
An adenovirus (Ad) DNA replication complex extracted from infected HeLa nuclei could be purified free of the bulk of intracellular DNA polymerase activity by sedimetation in neutral sucrose gradients. However, the replication complex still retained some alpha and gamma DNA-polymerase activity. Since this complex is inhibited by 2', 3' dideoxythymidine-5'-triphosphate (ddTTP), an inhibitor of DNA polymerase gamma, a functional role for this enzyme in Ad DNA replication is suggested. Similar inhibition by ddTTP in intact Ad infected nuclei and comparable inhibition of Ad DNA synthesis in whole cells by dideoxythymidine (ddThy) are consistent with a role for DNA polymerase gamma. Uninfected HeLa nuclei or whole cells are not similarly inhibited by ddTTP or DDThy respectively. Such data does not rule out an additional functional role for other DNA polymerases, and recent experiments from this laboratory (1) suggest that DNA polymerase alpha is also involved in Ad DNA synthesis.  相似文献   

7.
An inhibitor of lectin-induced splenocyte proliferation from serum of normal chickens has been characterized. This suppressive factor, found in both serum and plasma and at concentrations as low as 3%, causes a 50% inhibition in proliferative responses to T-cell lectins of autologous and heterologous lymphoid cells. The inhibitor in serum also dramatically suppresses murine IL-2 synthesis, proliferation of murine spleen cells stimulated with PHA, and synthesis of DNA in xenogeneic-transformed mammalian lymphoblastoid cell lines. Serum does not block binding of the lectin to lymphoid cells and the suppressive activity cannot be overcome by any dose of lectin. The inhibitor of DNA synthesis is destroyed by pepsin. NH4(2)SO4 (50%) and TCA (15%) treatments both precipitate the suppressor factor, which further indicates that the suppressive factor is a protein. A 330-fold purification of the inhibitory protein from serum was obtained when boiled serum was passed over a Sepharose 6B and then a DEAE-Sephacel column which was washed at pH 5.0 and eluted with 0.2 M NaCl. SDS-PAGE with silver staining revealed a nonreduced protein with an apparent molecular weight of 61 kDa. Less than 2 micrograms of the protein thus obtained caused a 50% inhibition in the proliferation of chicken lymphoid cells to Con A. The inhibitor of DNA synthesis is therefore not cytotoxic, does not bind to Con A or to mannose or glucose residues on lymphocytes, is acid and heat stable, and is associated with a protein that has a molecular weight of 61 kDa. Since such low concentrations of this naturally occurring, proteinaceous, immunosuppressive factor cause substantial inhibition of IL-2 synthesis and proliferative activity of T cells, this protein may be a very important immunomodulator.  相似文献   

8.
The proliferative capacity of thymocytes from C3H/HeJ mice decrease as the animals attain maturity. The proliferative response of thymocytes from 24- to 28-week-old mice to stimulation with concanavalin A (Con A) is only 20% of that observed at 4 weeks of age. The decreased proliferative capacity of thymocytes in response to Con A stimulation observed between 4 and 24 weeks of age closely correlates to the drop in thymic weight and cellularity observed during this period. In contrast, the spontaneous proliferative capacity of thymocytes, as well as proliferation of thymocytes in response to stimulation with phorbol myristate acetate (PMA) and ionomycin, drops only slightly during this period, as proliferation under these condition in thymocytes from 24- to 28-week-old mice is approximately 65-70% of that observed in 4-week-old animals. We have previously shown that cytoplasmic extracts from proliferating lymphoid cells contain a factor, termed the activator of DNA replication (ADR), which is capable of inducing DNA synthesis in isolated, quiescent nuclei. We show in this study that the decreased proliferative capacity of thymocytes during whole organism maturation and thymic involution is associated with decreased endogenous levels of ADR, while nuclear sensitivity of thymocyte to ADR was retained during these process. The diminution of ADR activity during thymic involution was quantitatively greater than the loss in proliferative capacity.  相似文献   

9.
Synchronized cells of a normal human lymphocytic cell line contain little swiven enzyme activity in G0 and G1 and high activity in Sphase. The level of activity in different growth phase appears to be related to the fraction of the population engaged in DNA replication. No endogenous inhibitor or activator of swiven activity could be demonstrated. The evidence implies that the enzyme may be present only during S phase; it is therefore a possible control factor for replication.  相似文献   

10.
Isolated cell nuclei were used as the source of template DNA to investigate the role of a cytosolic aprotinin-binding protein (ADR) in the initiation of eukaryotic DNA replication. Computerized image cytometry demonstrated that the DNA content of individual nuclei increased significantly following incubation with ADR-containing preparations, and the extent of DNA synthesis is consistent with that allowed by the limiting concentration of dTTP. Thus, dTTP incorporation into isolated nuclei represents DNA synthesis and not parent strand repair. We found that dTTP incorporation into the isolated nuclei is dependent on DNA polymerase α (a principal polymerase in DNA replication) but that DNA polymerase β (a principal polymerase in DNA repair processes) does not play a significant role in this system. Finally, neither aprotinin nor a previously described cytosolic ADR inhibitor can block the replication of nuclease-treated calf thymus DNA, while both strongly inhibit replication of DNA in isolated nuclei. This result, coupled with the relative ineffectiveness of nuclease-treated DNA compared with nuclear DNA to serve as a replicative template in this assay, argues against a significant contribution from repair or synthesis which initiates at a site of DNA damage. These data indicate that ADR-mediated incorporation of 3H-dTTP into isolated nuclei results from DNA replicative processes that are directly relevant to in vivo S phase events. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Isolation of a stimulatory factor for nuclear DNA replication   总被引:1,自引:0,他引:1  
Aqueous extracts of isolated nuclei and intact plasmodia of Physarum contain a heat-stable stimulator of nuclear DNA replication. The stimulatory factor is present throughout the mitotic cycle, and its activity is unaffected by prior exposure of plasmodia to cycloheximide. The stimulatory substance has been partially purified by heat treatment, precipitation with ethanol, chromatography on DEAE cellulose, and gel filtration. The purified material contains both carbohydrate and protein, and exhibits a molecular weight of about 30 000. The active substance increases the rate and overall extent of DNA replication in S-phase nuclei, but does not trigger the initiation of DNA synthesis in nuclei isolated from G2-phase plasmodia. The stimulatory material contains little or no deoxyribonuclease or DNA polymerase activity, and it does not affect DNA polymerase activity assayed using a purified DNA template.  相似文献   

12.
The effect of sodium butyrate on Tipula iridescent virus (TIV) synthesis in suspension-cultured cells of Estigmene acrea was investigated. Sodium butyrate reduces viral-induced cell fusion but this is reversible with the removal of butyrate. At 7 mM sodium butyrate, TIV replicates in cells within 8 hr, but does not replicate in this time with 10–20 mm butyrate in the cell medium; cells so treated contain large vesicles with inoculum. Upon removal of the inhibitor, TIV replication appears normal, but large inoculum vesicles can still be found in the cytoplasm, and many infected cells have highly condensed chromatin in their nuclei. Sodium butyrate causes a lag of at least 2 hr in viral DNA synthesis as detected by [3H]thymidine incorporation into viroplasmic centres and at 7 mm butyrate viral DNA synthesis is reduced by 50–60%. In comparison, butyrate at 7 and 10 mm concentration does not inhibit host DNA synthesis, but at 15 and 20 mm, nuclear DNA synthesis is markedly reduced.  相似文献   

13.
We have previously shown that a heat-stable protein in cytoplasmic extracts from human quiescent peripheral blood lymphocytes (PBL) is capable of inhibiting the induction of DNA synthesis in isolated resting nuclei. We now report that these cytoplasmic extracts are also capable of suppressing DNA synthetic activity in replicative nuclei isolated from mitogen-activated PBL. PBL extracts had little or no inhibitory effect, however, on replicative nuclei derived from several transformed lymphoblastoid cell lines. These results suggest that the growth of normal lymphocytes may be negatively controlled by cytoplasmic inhibitory factors. Furthermore, the relative resistance of tumor cell nuclei to these inhibitory signals provides a possible explanation for the loss of growth control in neoplastic cells.  相似文献   

14.
A previous report from our laboratory indicated that a proteinase inhibitor is produced by rabbit T lymphocytes. We now report that a human T cell line, C91/PL, produces a proteinase inhibitor which inhibits the enzymatic activity of trypsin and kallikrein. This newly identified proteinase inhibitor (LPI 1) did not inhibit the enzymatic activity of four other serine proteinases (thrombin, plasmin, chymotrypsin, or pancreatic elastase), a thiol proteinase (papain), or a carboxyl proteinase (pepsin). Active synthesis of LPI 1 by the C91/PL cell line was shown by the appearance of similar levels of inhibitory activity in sequential cell supernatants, lack of appearance of inhibitor in supernatants of cells killed by heat or sodium azide or of viable cells in the presence of cyclohexamide, and incorporation of a radiolabeled amino acid into newly synthesized inhibitor. Although both the inhibitor of rabbit origin and of human origin are proteins produced by T cells and have similar inhibitory specificity, important differences were observed: LPI 1 is sensitive to boiling and the two inhibitors migrate differently upon electrophoresis in substrate-containing polyacrylamide gel. Furthermore, LPI 1 was produced by a cell line of the T4 phenotype which had been established by in vitro viral transformation of human cord blood lymphocytes with HTLV 1 whereas the inhibitor of rabbit origin was produced by normal splenic T cells. Three other human T cell lines of the T4 phenotype, MOLT-13, KE-37, and HPB-ALL, from patients with acute lymphoblastic leukemia did not produce a proteinase inhibitor. Thus, the production of proteinase inhibitors does not appear to be a general characteristic of human T cell lines nor of the T4 subset. Proteinase inhibitors produced by T cells may have an immunoregulatory role in proteinase-mediated physiological processes.  相似文献   

15.
In this study, we show that human cytomegalovirus DNA synthesis is inhibited in infected confluent human embryonic lung cells treated with the DNA-intercalative topoisomerase II inhibitor 4-9'-(acridinylamino)methanesulfon-m-anisidide (m-AMSA). Similar inhibitory effects were observed with VM-26, a nonintercalative topoisomerase II inhibitor. This antiviral effect is not attributable to cytotoxic effects per se. Furthermore, m-AMSA appears to have a notably irreversible inhibitory effect on human cytomegalovirus DNA replication. No inhibition of viral DNA synthesis was observed with o-AMSA, a DNA-intercalative isomer of m-AMSA that does not inhibit topoisomerase II.  相似文献   

16.
Abstract. We have previously observed that the DNA topoisomerase I inhibitor camptothecin (CAM), or DNA topoisomerase II inhibitors teniposide (TEN) and amsacrine (m-AMSA) trigger endonucleolytic activity in myelogenous (HL-60 or KGl), but not lymphocytic (MOLT-4) leukaemic cell lines. DNA degradation and other signs of apoptotic death were seen as early as 2–4 h after cell exposure to these inhibitors. Cells replicating DNA (S phase) were selectively sensitive whereas cells in G1 were resistant; the sensitivity of G2 or M cells could not be assessed in these studies. The present studies were aimed at revealing whether DNA repair replication induced by ionizing radiation can sensitize the cells, and to probe the sensitivity of cells arrested in G2 or M, to these inhibitors. The data show that γ-irradiation (0.5–15 Gy) of HL-60 cells does not alter their pattern of sensitivity, i.e. G1 cells, although engaged in DNA repair replication, still remain resistant to CAM compared with the S phase cells. Likewise, irradiation of MOLT-4 cells also does not render them sensitive to either CAM or TEN, regardless of their position in the cell cycle. Irradiation, however, by slowing the rate of cell progression through S, increased the proportion of S phase cells, and thus made the whole cell population more sensitive to CAM. HL-60 cells arrested in G2 either by irradiation or treatments with Hoechst 33342 or doxorubicin appear to be more resistant to CAM relative to S phase cells. Also resistant are cells arrested in M by vinblastine. The data suggest that some factor(s) exist exclusively in S phase cells, which precondition them to respond to the inhibitors of DNA topoisomerases by rapid activation of endogenous nuclease(s) and subsequent death by apoptosis. HL-60 cells in G1, G2 or M, or MOLT-4 cells, regardless of the phase of the cycle, appear to be protected from such a mechanism, and even induction of DNA repair replication cannot initiate DNA degradation in response to DNA topoisomerase inhibitors. These data, together with the evidence in the literature that topoisomerase I may be involved in DNA repair, suggest that a combination of these inhibitors with treatments that synchronize cells in the S phase and/or recruit quiescent cells to proliferation, including radiation, may be of value in the clinic.  相似文献   

17.
NIH 3T3 mouse fibroblasts arrested in medium containing 0.5% serum were fused with stimulated cells taken at 2-h intervals after replacing the medium with one containing 10% serum, and DNA synthesis was studied in mono-, homo- and heterokaryons using radioautography with double-labelling technique. The presence of a resting nucleus in a common cytoplasm with a stimulated nucleus from the prereplicative period has an inhibitory effect on the entry of the stimulated nucleus into the S period in medium containing either 0.5 or 10% serum, but ongoing DNA synthesis continues. After a 24-h stay in a common cytoplasm with resting nuclei the stimulated nuclei return into the state of rest. When resting cells are stimulated by 10% serum, their inhibitory effect on stimulated nuclei in heterokaryons still persists, at least for 2 h following stimulation. Preincubation of resting cells with cycloheximide for 4 h abolishes their ability to suppress DNA synthesis in stimulated nuclei.The data suggest that resting cells produce an endogenous inhibitor of cell proliferation, whose formation depends upon the synthesis of protein. When stimulated, the cells can proliferate only after decreasing the level of this inhibitor. The results obtained are consistent with the idea of a negative control of cell proliferation.  相似文献   

18.
Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, heritable sites. Here we show that Xenopus egg extract can initiate DNA replication at specific sites in mammalian chromosomes, but only when the DNA is presented in the form of an intact nucleus. Initiation of DNA synthesis in nuclei isolated from G1-phase Chinese hamster ovary cells was distinguished from continuation of DNA synthesis at preformed replication forks in S-phase nuclei by a delay that preceded DNA synthesis, a dependence on soluble Xenopus egg factors, sensitivity to a protein kinase inhibitor, and complete labeling of nascent DNA chains. Initiation sites for DNA replication were mapped downstream of the amplified dihydrofolate reductase gene region by hybridizing newly replicated DNA to unique probes and by hybridizing Okazaki fragments to the two individual strands of unique probes. When G1-phase nuclei were prepared by methods that preserved the integrity of the nuclear membrane, Xenopus egg extract initiated replication specifically at or near the origin of bidirectional replication utilized by hamster cells (dihydrofolate reductase ori-beta). However, when nuclei were prepared by methods that altered nuclear morphology and damaged the nuclear membrane, preference for initiation at ori-beta was significantly reduced or eliminated. Furthermore, site-specific initiation was not observed with bare DNA substrates, and Xenopus eggs or egg extracts replicated prokaryotic DNA or hamster DNA that did not contain a replication origin as efficiently as hamster DNA containing ori-beta. We conclude that initiation sites for DNA replication in mammalian cells are established prior to S phase by some component of nuclear structure and that these sites can be activated by soluble factors in Xenopus eggs.  相似文献   

19.
Macrophages consume cystine and generate approximately equivalent amounts of acid-soluble thiol. Stimulation of macrophages with bacterial lipopolysaccharide (LPS) or tumor necrosis factor (TNF) strongly augments the amount of thiol released into the culture supernatant. Cysteine constitutes most of the acid-soluble thiol. The intracellular glutathione level and the DNA synthesis activity in mitogenically stimulated lymphocytes are strongly increased by either exogenously added cysteine, or (syngeneic) macrophages. This cysteine dependency is observed even in the presence of relatively high extracellular cystine concentration as they occur in the blood plasma. The extracellular cysteine concentration also has a strong influence on the intracellular glutathione concentration, viability, and DNA synthesis of cycling T cell clones. Moreover, the cysteine concentration in the culture medium on Day 3 and Day 4 of a 5-day allogeneic mixed lymphocyte culture (i.e., in the late phase of incubation) has a strong influence on the generation of cytotoxic T cell activity, indicating that regulatory effects of cysteine are not restricted to the early phase of the blastogenic response. The inhibitory effect of cysteine starvation on the DNA synthesis of the T cell clones and on the activation of cytotoxic T lymphocytes can be explained essentially by the depletion of intracellular glutathione, since similar effects are observed after treatment with buthionine sulfoximine (BSO), a specific inhibitor of the glutathione biosynthesis. BSO has practically no influence, however, on the N alpha-benzyloxycarbonyl Ne-t-butyloxycarbonyl-L-lysine-thiobenzyl-ester (BLT)-esterase activity and hemolytic activity of the cell lysates from cytotoxic T cells against sheep red blood cells (perforin activity). Taken together, our experiments indicate that cysteine has a regulatory role in the immune system analogous to the hormone-like lymphokines and cytokines. It is released by macrophages at a variable and regulated rate and regulates immunologically relevant functions of lymphocytes in the vicinity.  相似文献   

20.
A direct effect of activated human p53 on nuclear DNA replication.   总被引:12,自引:5,他引:7       下载免费PDF全文
L S Cox  T Hupp  C A Midgley    D P Lane 《The EMBO journal》1995,14(9):2099-2105
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号