首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
棉花高品质纤维性状QTLs的分子标记筛选及其定位   总被引:26,自引:1,他引:25  
利用7235、TM-1亲本(P1、P2),以及(7235×TM-1)F1、F2(南京和美国2个环境)与F23(南京和海南2个环境)家系群体,根据F2与F23的纤维品质性状表现,构建了纤维强度、细度与长度的极值DNA混合池,通过221对SSR引物、1840个RAPD引物对亲本和极值DNA混合池筛选,共得到了13个多态性标记,其中8个标记可能与高强有关,1个标记与低强有关;3个标记与麦克隆值有关;1个与绒长有关.进一步通过F2分离群体检测,连锁分析表明与高强有关的8个标记(2个SSR标记和6个RAPD标记)紧密连锁,覆盖15.5cM.这一高强纤维的QTL,4个环境中均以FSR1933为最近,相距不超过0.6cM,能解释35%的F2变异,53.8%的F23的表型变异,是目前纤维强度单个QTL效应最大的,多个环境下稳定,可以直接用于标记辅助育种.单体测验表明,该在棉花的第10染色体上.麦克隆值的一个主效QTL标记FMR1603,在F2中能解释7.8%的变异,在F23中能解释25.4%的变异,同样表现环境稳定.纤维长度的一个标记FLR11550,在3个环境中预测到,最大能解释9.5%  相似文献   

2.
分子标记辅助聚合两个棉纤维高强主效QTLs的选择效果   总被引:16,自引:0,他引:16  
利用长江流域推广品种泗棉3号和优异纤维种质系7235为育种亲本,配置了系统育种和修饰回交聚合育种两套群体。基于来自7235的2个高强纤维主效QTL的分子标记,在上述育种群体中进行了分子标记辅助选择效率研究。高强纤维主效QTLfs1是利用(7235×TM1)F2分离群体,通过集团混合分离法检测到的,它可解释纤维强度表型变异的30%以上。高强纤维主效QTLfs2最初是利用(HS42710×TM1)F2分离群体检测到的,它可解释纤维强度表型变异的12.5%以上。进一步的研究表明,该QTL也位于7235优质系中,但与QTLfs1非等位。2套育种分离群体的2个高强纤维主效QTL的分子标记辅助选择效果表明:QTLfs1在不同环境条件下均稳定表达,它对不同遗传背景的育种群体均有显著的选择效果。尽管QTLfs2的选择效果低于QTLfs1,它在高世代育种群体中也表现较高的选择效率。利用分子标记辅助选择具有一定遗传距离的QTLfs1区间,其纤维强度的选择效率将大大增强。通过分子标记对位于不同连锁群上的2个QTL聚合选择,其中选单株的纤维强度显著提高。研究结果为利用分子标记辅助聚合优质QTL提供了成功实例。  相似文献   

3.
试验拟对谷子重要农艺性状进行数量性状位点QTL分析。以表型差异较大的沈3/晋谷20F2作图群体为材料,观测其株高、穗长等性状,选用SSR做分子标记,利用完备区间作图法(BASTEN C J)进行QTL分析。结果显示,表型数据在作图群体中呈现连续分布,表现为多基因控制的数量性状,被整合的54个SSR标记构建10个连锁群,LOD阈值设置为2.0,检测到与株高相关的主效QTL2个,联合贡献率45.9637%,穗长主效QTL1个,贡献率14.9647%,与穗重、粒重相关的主效QTL为同一位点,贡献率分别为11.9601%和10.1879%。有6组QTL位点之间存在基因互作效应,大小范围为-0.4986-16.6407,对性状的贡献率在2.2716%至6.7478%之间。谷子表型控制复杂,相关QTL的检测受环境影响较大,不同连锁群QTL间互作明显。  相似文献   

4.
玉米穗行数QTL及其互作分析   总被引:2,自引:0,他引:2  
利用与穗行数有关的5个导入系及轮回亲本综3进行GriffingⅣ双列杂交发展分离群体,结合SSR标记和田间表型鉴定,分析玉米穗行数QTL及其相互作用。在导入系×综3所发展的5个F2群体中,仅在一个群体中检测到1个穗行数QTL,所解释的表型变异为10.68%。在导入系间杂交所发展的F2群体中检测到9个QTLs,分别位于第1、3、8染色体上,所解释的表型变异在4.53%-6.52%之间。另外,检测到2对QTL间互作,10对QTL与未检测到QTL的导入片段间的互作,单个F2群体中各类互作所解释的表型变异显著大于QTL所解释的表型变异。这些结果表明,基因互作在玉米穗行数形成中起着重要的作用。  相似文献   

5.
黄瓜抗白粉病QTL分子标记定位   总被引:4,自引:0,他引:4  
利用黄瓜(Cucumis sativusL)自交系S94(中国华北型,感白粉病)和S06(欧洲温室型,抗白粉病)及其由它们构建的224个F6:7家系的重组自交系(RIL)群体,分别在2005年秋和2006年春苗期温室喷雾接种,进行白粉病抗性遗传分析;并在已构建的相应分子标记遗传图谱上,使用复合区间定位方法检测白粉病抗性数量基因座位(QTL).结果显示,在两种环境里共检测到黄瓜白粉病抗性的4个QTL(分别是pml.1,pm2.1,pm4.1和pm6.1),分布于连锁群1,2,4和6上,单个QTL解释贡献率介于5.2%~21.0%之间.其中pm1.1,pm2.1和pm4.1在两种环境中被稳定重复检测到,pm6.1只在2005年秋被检测到.两种环境下检测的QTL解释表型变异总和分别是52.0%(2005年秋)和42.0%(2006年春).与QTL紧密连锁的标记(〈5cM)为分子标记辅助选择(MAS)抗白粉病黄瓜品种和抗性基因的分离和克隆提供了技术支撑.  相似文献   

6.
水稻红莲型CMS育性恢复QTL分析   总被引:4,自引:0,他引:4  
红莲型CMS是在我国杂交水稻生产中被广泛利用的雄性不育细胞质之一。为了同时定位红莲型CMS育性恢复主效和微效QTL,利用红莲型CMS不育系粤泰A(YTA)与“Lemont/特青”RIL群体测交,结合1张含有198个DNA分子标记的高密度遗传图谱,对测交F1群体的小穗育性和花粉育性进行复合区间作图。在对YTA的育性恢复性方面,该。RIL群体的2个亲本之间具有明显差异,特青的恢复性较强,其测交F1的小穗育性和花粉育性分别为72%和51%;而Lemont测交F1的小穗育性和花粉育性分别为32%和9%。复合区间作图定位到4个育性恢复QTL,分别位于水稻第1、2和10号染色体上,单个QTL的贡献率在5%~24%之间。其中,除1个QTL的增效基因来源于Lemont外,其余3个QTL的增效基因均来源于特青。效应最大的QTL为qRF-10-1,该QTL位于10号染色体RM258-C16标记区间,对小穗育性表型变异的贡献率为24%,对花粉育性的贡献率为17%,且该QTL被检测到的LOD值显著较高,因此是1个主效QTL,其增效基因来源于特青。除了主效QTLqRF-10-1外,其它3个QTL对性状的贡献率均在10%以下(5%~8%)。由此表明,该RIL群体对红莲型CMS的育性恢复由1个主效QTL控制,并受其它几个微效QTL的影响。该QTL定位结果与小穗育性在测交F1群体中呈连续的双峰分布的结果相一致。与主效QTL qRF-10-1紧密连锁的SSR标记为RM258,该主效QTL可作为分子标记辅助育种的操作目标之一,用于杂交稻分子育种中培育红莲型CMS的强恢复系。  相似文献   

7.
云南元江普通野生稻株高和抽穗期QTL定位研究   总被引:5,自引:0,他引:5  
以云南元江普通野生稻为供体亲本,在特青的遗传背景下构建了一套BC3高代回交群体。利用117个SSR标记分析383个BC3F2株系的基因型,采用单标记分析法对控制元江普野株高和抽穗期的QTL进行分析。在北京和合肥两个地点试验结果表明,控制株高的QTL分布在第1染色体上,在RM104附近有一个QTL,与sd-1位置相当,其对表现型变异的贡献率在两个地点分别为27%和28%,其加性效应值分别为26.24cm和26.28cm,来自野生稻的等位基因显著提高回交群体的株高;在第1、3、7、8、11染色体共检测到6个控制抽穗期QTL,其中第8染色体RM25附近控制抽穗期的QTL在两个地点的贡献率分别为13%和15%,加性效应值为4.60d和3.65d,来自野生稻的等位基因使回交群体抽穗期延迟。  相似文献   

8.
利用三倍体胚乳遗传模型定位玉米籽粒淀粉含量QTL   总被引:2,自引:0,他引:2  
董永彬  李玉玲  牛素贞 《遗传》2006,28(11):1401-1406
在两种环境条件下种植以普通玉米自交系丹232和爆裂玉米自交系N04为亲本构建的259个F2:3家系群体, 采用SSR标记构建了包含183个标记的玉米遗传连锁图谱, 覆盖玉米基因组1 762.2 cM, 标记间平均距离为9.6 cM。利用三倍体胚乳遗传模型和区间作图方法对籽粒淀粉含量进行了QTL定位和遗传效应分析, 春、夏播条件下共检测到10个QTL, 春播条件下检测到的QTL在夏播均被检测到, 分别位于第1、3、4、5、7染色体上,可解释淀粉的表型总变异分别为36.84%和72.65%, 单个QTL解释表型变异介于4.74%~11.26%。在检测到的 QTL中, 有2个QTL的遗传作用方式在春播均表现为超显性, 而夏播分别为加性和部分显性; 其他2个为加性, 1个为部分显性, 5个为超显性。3个QTL的增效基因来自丹232, 其余QTL的增效基因均来自N04。  相似文献   

9.
水稻叶片性状和根系活力的QTL定位   总被引:12,自引:2,他引:10  
应用由247个株系组成的珍汕97B/密阳46重组自交系(RIL)群体及其分子标记连锁图谱,检测控制剑叶、倒二叶、倒三叶的5个形态性状和控制根系伤流量性状的数量性状座位(QTL)。在9个标记区间检测到控制叶片形态性状的24个QTL,LOD值为2.9~11.8,单个QTL的表型变异贡献率为4.0%~32.5%;分别检测到56对和4对控制叶片形态和根系活力的上位性互作,绝大多数互作发生在2个不表现加性效应的座位之间。与该群体产量性状QTL的研究结果相比较,发现控制叶片性状和根系活力的QTL与产量性状QTL往往处于相似的染色体区间。  相似文献   

10.
甘蓝型黄籽油菜种皮色泽QTL作图   总被引:8,自引:0,他引:8  
甘蓝型黄籽油菜具有低纤维、高蛋白及高含油量的优点,因而己成为广大油菜育种工作者研究的重点之一。利用甘蓝型黑籽品系油研2号作父本,计蓝型黄籽品系GH06为母本,获得132个单株的F2群体;以AFLP和SSR为主要分析方法,构建了包括164个标记的甘蓝型油菜遗传连锁图谱,其中包括125个AFLP标记、37个SSR标记及一个RAPD和一个SCAR标记,分布在19个连锁群上,覆盖油菜基因组2549.8cM,标记间平均距离15.55cM。利用多区间作图法,对种皮色泽QTL进行分析,在第5及第19连锁群上各检测到一个QTL位点,分别解释表型变异46%及30.9%。  相似文献   

11.
Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai'an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTLxenvironment interactions (QEs). Two major QTLs, QphAB and Qph4D, which accounted for 14.51 % and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rhtl and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL ef fects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).  相似文献   

12.
Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai’an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL×environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rht1 and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).  相似文献   

13.
The use of molecular markers to identify quantitative trait loci (QTLs) has the potential to enhance the efficiency of trait selection in plant breeding. The purpose of the present study was to identify additional QTLs for plant height, lodging, and maturity in a soybean, Glycine max (L.) Merr., population segregating for growth habit. In this study, 153 restriction fragment length polymorphisms (RFLP) and one morphological marker (Dt1) were used to identify QTLs associated with plant height, lodging, and maturity in 111 F2-derived lines from a cross of PI 97100 and Coker 237. The F2-derived lines and two parents were grown at Athens, Ga., and Blackville, S.C., in 1994 and evaluated for phenotypic traits. The genetic linkage map of these 143 loci covered about 1600 cM and converged into 23 linkage groups. Eleven markers remained unlinked. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), loci were tested for association with phenotypic data taken at each location as well as mean values over the two locations. In the combined analysis over locations, the major locus associated with plant height was identified as Dt1 on linkage group (LG) L. The Dt1 locus was also associated with lodging. This locus explained 67.7% of the total variation for plant height, and 56.4% for lodging. In addition, two QTLs for plant height (K007 on LG H and A516b on LG N) and one QTL for lodging (cr517 on LG J) were identified. For maturity, two independent QTLs were identified in intervals between R051 and N100, and between B032 and CpTI, on LG K. These QTLs explained 31.2% and 26.2% of the total variation for maturity, respectively. The same QTLs were identified for all traits at each location. This consistency of QTLs may be related to a few QTLs with large effects conditioning plant height, lodging, and maturity in this population.  相似文献   

14.
A previous genetic map containing 117 microsatellite loci and 400 F(2) plants was used for quantitative trait loci (QTL) mapping in tropical maize. QTL were characterized in a population of 400 F(2:3) lines, derived from selfing the F(2) plants, and were evaluated with two replications in five environments. QTL determinations were made from the mean of these five environments. Grain yield (GY), plant height (PH), ear height (EH) and grain moisture (GM) were measured. Variance components for genotypes (G), environments (E) and GxE interaction were highly significant for all traits. Heritability was 0.69 for GY, 0.66 for PH, 0.67 for EH and 0.23 for GM. Using composite interval mapping (CIM), a total of 13 distinct QTLs were identified: four for GY, four for PH and five for EH. No QTL was detected for GM. The QTL explained 32.73 % of the phenotypic variance of GY, 24.76 % of PH and 20.91 % of EH. The 13 QTLs displayed mostly partial dominance or overdominance gene action and mapped to chromosomes 1, 2, 7, 8 and 9. Most QTL alleles conferring high values for the traits came from line L-14-4B. Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL. The low number of QTLs found, can be due to the great variation that exists among tropical environments.  相似文献   

15.
A doubled-haploid (DH) population from an intervarietal cross between the Japanese cultivar 'Fukuho-komugi' and the Israeli wheat line 'Oligoculm' was produced by means of wheat x maize crosses. One hundred seven DH lines were genotyped to construct a simple sequence repeat (SSR) based linkage map with RFLP, RAPD, and inter-simple sequence repeat markers. Out of 570 loci genotyped, 330 were chosen based on their positions on the linkage map to create a "framework" map for quantitative trait locus (QTL) analysis. Among the 28 linkage groups identified, 25 were assigned to the 21 chromosomes of wheat. The total map length was 3948 cM, including the three unassigned linkage groups (88 cM), and the mean interval between loci was 12.0 cM. Loci with segregation distortion were clustered on chromosomes 1A, 4B, 4D, 5A, 6A, 6B, and 6D. After vernalization, the DH lines were evaluated for spike number per plant (SN) and spike length (SL) in a greenhouse under 24-h daylength to assess the "gigas" features (extremely large spikes and leaves) of 'Oligoculm'. The DH lines were also autumn-sown in the field in two seasons (1990-1991 and 1997-1998) for SN and SL evaluation. QTL analysis was performed by composite interval mapping (CIM) with the framework map to detect QTLs for SN and SL. A major QTL on 1AS, which was stable in both greenhouse and field conditions, was found to control SN. This QTL was close to the glume pubescence locus (Hg) and explained up to 62.9% of the total phenotypic variation. The 'Oligoculm' allele restricted spike number. The SSR locus Xpsp2999 was the closest locus to this QTL and is considered to be a possible marker for restricted tillering derived from 'Oligoculm'. Eight QTLs were detected for SL. The largest QTL detected on 2DS was common to the greenhouse and field environments. It explained up to 33.3% of the total phenotypic variation. The second largest QTL on 1AS was common to the greenhouse and the 1997-1998 season. The position of this QTL was close to that for the SN detected on 1AS. The association between SN and SL is discussed.  相似文献   

16.
以中国的高油分自交系“高油”和欧洲高含油量品种“Sollux”的F1产生的282个株系组成的双二倍体(DH)群体为材料,在125个SSR标记座位构建的连锁图谱基础上,根据在中国和欧洲四个不同环境下的表型鉴定结果,采用混合线性模型基础上的QTL分析软件,对油菜3个重要农艺性状:株高,开花期和成熟期进行了数量性状基因座位(QTL)的联合定位分析,估测了这些QTL的加性、上位性以及与环境的互作效应。结果表明各性状均受多个加性、加加上位以及与环境互作的QTL控制。株高受多个QTL影响(12个位点具有加性或兼有环境互作效应,5个位点具有互作效应),以加性效应为主,加性效应总和可解释定位群体表型变异的75%左右,并多兼有上位性效应。12个主效QTL中,9个是“高油”等位基因相对“Sollux”有降低株高的作用,大多数加性×环境互作QTL的有效等位基因具有环境选择特异性。7个ae基因座位中,5个“高油”等位基因在杭州种植环境下,除一例外所有在德国环境下的互作基因座中,“Sollux”等位基因起着增加株高的作用,加加上位性主效总和为加性主效总和的三分之一。7个控制花期和8个控制成熟期的主效QTL中,分别有6个和5个是来自“高油”的等位基因相对“Sollux”具有提前开花和成熟的效应,这些QTL的效应总和占到性状表型变异的60%左右。5个位于第2和第12连锁群中的2个大效应QTL可能和已多次报导的VFN1和VFN3基因相近或相同。开花期和成熟期两性状均检测到显著的ae互作效应,双亲等位基因的效应在各环境下呈离散分布。位于14和19连锁群上的两个主效株高QTL同时也是控制开花期和油分含量的基因位点,因而利用这两个位点进行标记辅助筛选时要考虑到对油分含量的影响。控制成熟期的8个主效QTL中有3个同时也是控制开花期的基因座位,证实了开花期和成熟期高度正相关的遗传基础,两个生育性状均表现有较弱的QTL间加加上位互作,但以主效QTL的作用为主。  相似文献   

17.
D F Austin  M Lee 《Génome》1996,39(5):957-968
Recombinant inbred (RI) lines offer several advantages for detecting quantitative trait loci (QTLs), including increased precision of trait measurements, power for detection of additive effects, and resolution of linked QTLs. This study was conducted to detect and characterize QTLs in maize for flowering and plant height and to compare QTL detection in an early (F2:3) generation of the same population. One hundred and eighty-six RIs from a cross between inbred lines Mo17 and H99 were evaluated in a replicated field experiment and analyzed at 101 loci detected by restriction fragment length polymorphisms. QTLs were identified by single-factor analysis of variance. A total of 59 QTLs were detected for plant height, ear height, top height, anthesis, silk emergence, and anthesis to silk interval. Individual QTLs explained 2.2-15.4% of trait variation, and multiple models including all QTLs detected for a trait explained up to 52.5% of the phenotypic variation. Comparison of QTLs detected with 150 F2:3 lines from the same population indicated that 16 (70%) of the 23 F2:3 QTLs were also observed in the F6:7 generation. Parental effects were consistent across generations. At 14 of the 16 QTLs detected in both generations, genetic effects were smaller in the F6:7. Also, some QTLs detected in the F2:3 were resolved into multiple linked QTLs in the F6:7, indicating the additional power of RI populations for mapping, with important implications for marker-assisted selection as well as map-based cloning of QTLs. Key words : Zea mays, RFLP, plant breeding, genetics, recombination.  相似文献   

18.
Resistance to the disease septoria tritici blotch of wheat (Triticum aestivum L.), caused by the fungus Mycosphaerella graminicola (Fuckel.) J. Schrot in Cohn (anamorph Septoria tritici Roberge in Desmaz.) was investigated in a doubled-haploid (DH) population of a cross between the susceptible winter wheat cultivar Savannah and the resistant cultivar Senat. A molecular linkage map of the population was constructed including 76 SSR loci and 244 AFLP loci. Parents and DH progeny were tested for resistance to single isolates of M. graminicola in a growth chamber at the seedling stage, and to an isolate mixture at the adult plant stage, in field trials. A gene located at or near the Stb6 locus mapping to chromosome 3A provided seedling resistance to IPO323. Two complementary genes, mapping to chromosome 3A, one of which was the IPO323 resistance gene, were needed for resistance to the Danish isolate Ris?97-86. In addition, a number of minor loci influenced the expression of resistance in the growth chamber. In the field, four QTLs for resistance to septoria tritici blotch were detected. Two QTLs, located on chromosomes 3A and 6B explained 18.2 and 67.9% of the phenotypic variance in the mean over two trials. Both these QTLs were also detected at the seedling stage with isolate Ris?97-86, whereas isolate IPO323 only detected the QTL on 3A. Additionally, two QTLs identified in adult plants on chromosomes 2B and 7B were not detected at the seedling stage. Four QTLs were detected for plant height located on chromosomes 2B, 3A, 3B and on a linkage group not assigned to a chromosome. The major QTLs on 3A and on the unassigned linkage group were consistent over two trials, and the QTL on 3A seemed to be linked to a QTL for septoria tritici blotch resistance.  相似文献   

19.
Mapping soybean aphid resistance genes in PI 567598B   总被引:1,自引:0,他引:1  
The soybean aphid (Aphis glycines Matsumura) has been a major pest of soybean [Glycine max (L.) Merr.] in North America since it was first reported in 2000. Our previous study revealed that the strong aphid resistance of plant introduction (PI) 567598B was controlled by two recessive genes. The objective of this study was to locate these two genes on the soybean genetic linkage map using molecular markers. A mapping population of 282 F4:5 lines derived from IA2070 × E06902 was evaluated for aphid resistance in a field trial in 2009 and a greenhouse trial in 2010. Two quantitative trait loci (QTLs) were identified using the composite and multiple interval mapping methods, and were mapped on chromosomes 7 (linkage group M) and 16 (linkage group J), respectively. E06902, a parent derived from PI 567598B, conferred resistance at both loci. In the 2010 greenhouse trial, each of the two QTLs explained over 30 % of the phenotypic variation. Significant epistatic interaction was also found between these two QTLs. However, in the 2009 field trial, only the QTL on chromosome 16 was found and it explained 56.1 % of the phenotypic variation. These two QTLs and their interaction were confirmed with another population consisting of 94 F2:5 lines in the 2008 and 2009 greenhouse trials. For both trials in the alternative population, these two loci explained about 50 and 80.4 % of the total phenotypic variation, respectively. Our study shows that soybean aphid isolate used in the 2009 field trial defeated the QTL found on chromosome 7. Presence of the QTL on chromosome 16 conferred soybean aphid resistance in all trials. The markers linked to the aphid-resistant QTLs in PI 567598B or its derived lines can be used in marker-assisted breeding for aphid resistance.  相似文献   

20.
水稻籼粳交DH群体收获指数及源库性状的QTL分析   总被引:2,自引:0,他引:2  
以 1个水稻籼粳交 (圭 6 30 0 2 4 2 8)来源的DH群体为材料 ,利用 1张含有 2 32个标记的RFLP连锁图谱和基于混合线性模型的定位软件QTLMapper1 0对水稻收获指数及生物量、籽粒产量、库容量和株高 5个性状进行QTL分析 ,共检测到 2 1个主效应QTLs和 9对上位性互作位点。其中 ,控制籽粒产量的 3个QTLs合计贡献率为 4 2 % ,LOD值为 7 10 ;这 3个QTLs或者与收获指数的QTL同位 ,或者与生物量的QTL同位 ,且加性效应的方向一致 ,从而揭示了“籽粒产量 =生物量×收获指数”的遗传基础所在。控制收获指数的 4个QTLs合计贡献率为 4 6 % ,LOD值为 10 3;控制生物量的 4个QTLs合计贡献率为 6 4 % ,LOD值为 14 0 9;收获指数的 4个QTLs与生物量的 4个QTLs均不同位。因此 ,通过基因重组 ,可能实现控制收获指数和生物量的增效基因的聚合 ,由此获得收获指数和生物量“双高”的基因型。检测到 5个株高QTLs,其合计贡献率为 6 4 % ,LOD值为 11 6 2 ;其中 ,有 3个效应较小的QTLs与生物量、库容量和 或籽粒产量QTLs同位 ,且同位QTLs的加性效应方向一致 ;未发现株高QTLs与收获指数QTLs的同位性。由此表明 ,株高与“源 流 库”概念中的“源”和“库”在遗传上有一定程度的关联 ,而与“流”无关联。此外还发现 ,在上述同位性QTL  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号