首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stitz M  Baldwin IT  Gaquerel E 《PloS one》2011,6(10):e25925
A plant's inducible defenses against herbivores as well as certain developmental processes are known to be controlled by the jasmonic acid (JA) pathway. We have previously shown that ectopically expressing Arabidopsis thaliana JA O-methyltransferase in Nicotiana attenuata (35S-jmt) strongly reduces the herbivory-elicited jasmonate bursts by acting as metabolic sink that redirects free JA towards methylation; here we examine the consequences of this metabolic sink on N. attenuata's secondary metabolism and performance in nature. In the glasshouse, 35S-jmt plants produced fewer seed capsules due to shorter floral styles, which could be restored to wild type (WT) levels after hand-pollination, and were more susceptible to Manduca sexta larvae attack. When transplanted into the Great Basin Desert in Utah, 35S-jmt plants grew as well as WT empty vector, but were highly attacked by native herbivores of different feeding guilds: leaf chewers, miners, and single cell feeders. This greater susceptibility was strongly associated with reduced emissions of volatile organic compounds (hexenylesters, monoterpenes and sesquiterpenes) and profound alterations in the production of direct defenses (trypsin proteinase inhibitors [TPI], nicotine, diterpene glycosides [DTGs] and phenylpropanoid-polyamine conjugates) as revealed by a combination of targeted and metabolomics analyses of field collected samples. Complementation experiments with JA-Ile, whose formation is outcompeted in 35S-jmt plants by the methylation reaction, restored the local TPI activation to WT levels and partially complemented nicotine and DTG levels in elicited but not systemic leaves. These findings demonstrate that MeJA, the major JA metabolite in 35S-jmt plants, is not an active signal in defense activation and highlights the value of creating JA sinks to disrupt JA signaling, without interrupting the complete octadecanoid pathway, in order to investigate the regulation of plants' defense metabolism in nature.  相似文献   

2.
3.
BAK1 is a co-receptor of brassinosteroid (BR) receptor BRI1, and plays a well-characterized role in BR signalling. BAK1 also physically interacts with the flagellin receptor FLS2 and regulates pathogen resistance. The role of BAK1 in mediating Nicotiana attenuata's resistance responses to its specialist herbivore, Manduca sexta, was examined here. A virus-induced gene-silencing system was used to generate empty vector (EV) and NaBAK1-silenced plants. The wounding- and herbivory-induced responses were examined on EV and NaBAK1-silenced plants by wounding plants or simulating herbivory by treating wounds with larval oral secretions (OS). After wounding or OS elicitation, NaBAK1-silenced plants showed attenuated jasmonic acid (JA) and JA-isoleucine bursts, phytohormone responses important in mediating plant defences against herbivores. However, these decreased JA and JA-Ile levels did not result from compromised MAPK activity or elevated SA levels. After simulated herbivory, NaBAK1-silenced plants had EV levels of defensive secondary metabolites, namely, trypsin proteinase inhibitors (TPIs), and similar levels of resistance to Manduca sexta larvae. Additional experiments demonstrated that decreased JA levels in NaBAK1-VIGS plants, rather than the enzymatic activity of JAR proteins or Ile levels, were responsible for the reduced JA-Ile levels observed in these plants. Methyl jasmonate application elicited higher levels of TPI activity in NaBAK1-silenced plants than in EV plants, suggesting that silencing NaBAK1 enhances the accumulation of TPIs induced by a given level of JA. Thus NaBAK1 is involved in modulating herbivory-induced JA accumulation and how JA levels are transduced into TPI levels in N. attenuata.  相似文献   

4.
CORONATINE INSENSITIVE 1 (COI1) is a well-known key player in processes downstream of jasmonic acid (JA) biosynthesis: silencing COI1 in Nicotiana attenuata (ir-coi1) makes plants insensitive to JA, prevents the up-regulation of JA-mediated defenses and decreases the plant's resistance to herbivores and pathogens. In agreement with previous studies, we observed that regulation of several JA biosynthesis genes elicited by Manduca sexta oral secretions (OS) is COI1 dependent. In response to wounding and application of OS ir-coi1 plants accumulate 75% less JA compared with wild-type plants (WT), resembling JA levels found in plants silenced in the key enzyme in JA biosynthesis LIPOXYGENASE 3 (as-lox). However, while OS-elicited as-lox plants also accumulated lower levels of the JA-conjugate JA-isoleucine (JA-Ile) than did WT plants, JA-Ile accumulation in ir-coi1 was higher, prolonged and peaked with a delay of 30 min. In vivo substrate feeding experiments of N. attenuata demonstrate that the increased and prolonged JA-Ile accumulation pattern in ir-coi1 is not the result of altered substrate availability, i.e. of JA and/or Ile, but is due to an approximately 6-fold decrease in JA-Ile turnover. These results provide the first evidence for a second, novel regulatory feedback function of COI1 in enhancing JA-Ile turnover. Hence, in addition to its control over JA biosynthesis, COI1 might fine-tune the dynamics of the jasmonate response after induction by herbivore elicitors.  相似文献   

5.
The oxylipin pathway mediates wound- and herbivore-induced defense reactions in Nicotiana attenuata as evidenced by a transient jasmonic acid (JA)-burst that precedes these defense responses. The fate of this induced JA-burst remains unknown. Two derivatives of JA, its methylester, methyl jasmonate (MeJA) and cis -jasmone ( cis J), are thought to be a means of disposing of JA through volatilization at the plant surface. In N. attenuata, the headspace quantities of these compounds did not change over 3 days, although levels of MeJA and cis J increased 100- and 70-fold, respectively, in surface extracts of attacked leaves after feeding of Manduca sexta larvae or application of larval regurgitant to mechanical wounds. Inhibition of the wound-induced increase in JA with indole-3-acetic acid (IAA) revealed an association between the JA accumulation and subsequent increases in MeJA and cis J. Induced systemic increases of MeJA were not of local origin and therefore do not contribute to the inactivation of the JA-burst in the wounded leaf. The total amount of MeJA and cis J produced could only account for 9% of the JA-burst elicited by herbivore attack and therefore their production do not represent major disposal pathways of JA in N. attenuata .  相似文献   

6.
7.
8.
9.
Allopolyploid hybridization instantly merges two differentially adapted genomes into one individual. Allopolyploids are often evolutionarily successful, undergoing adaptive radiations despite the genetic and physiological challenges of merging genomes. We examine a suite of induced herbivore resistance traits in three independent lines of the synthetic allopolyploid Nicotianaxmierata (Nma) and its parent species, N. miersii (Nmi) and N. attenuata (Na), to determine how a complex polygenetic adaptation fares during the early stages of neoallopolyploid formation. All species responded to Manduca sexta oral secretions (OS) with a temporally prolonged jasmonate (JA) burst. In one parent (Na), the JA burst was additionally amplified and associated with the elicitation of direct and indirect defenses. In the other parent (Nmi), OS neither amplified the JA burst nor elicited defense responses, although applied MeJA confirmed the inducibility of the defense responses. All lines of Nma retained enough aspects of Na's JA signaling to recognize OS and to accumulate sufficient direct defenses to impair the growth of Manduca larvae. Most defense-related metabolites were retained in Nma even if inherited from only one parent; however, OS-elicited volatiles, trypsin protease inhibitors (TPIs) and chlorogenic acid were lost in some lines, even though MeJA treatment elicited similar responses in all lines. Herbivore defense systems are flexibly inherited in allopolyploids, causing individuals to diverge over only a few generations; for example, line 1 of Nma could not produce TPIs after OS elicitation, whereas lines 2 and 3 could. This flexible integration of defense signaling systems with a diversity of elicited responses may explain why adaptive radiations are commonly found in allopolyploid lineages.  相似文献   

10.
11.
Jasmonates are major plant hormones involved in wounding responses. Systemic wounding responses are induced by an electrical signal derived from damaged leaves. After the signaling, jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) are translocated from wounded to undamaged leaves, but the molecular mechanism of the transport remains unclear. Here, we found that a JA-Ile transporter, GTR1, contributed to these translocations in Arabidopsis thaliana. GTR1 was expressed in and surrounding the leaf veins both of wounded and undamaged leaves. Less accumulations and translocation of JA and JA-Ile were observed in undamaged leaves of gtr1 at 30 min after wounding. Expressions of some genes related to wound responses were induced systemically in undamaged leaves of gtr1. These results suggested that GTR1 would be involved in the translocation of JA and JA-Ile in plant and may be contributed to correct positioning of JA and JA-Ile to attenuate an excessive wound response in undamaged leaves.  相似文献   

12.
Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.  相似文献   

13.
14.
15.
Nitric oxide-associated protein 1 (NOA1) is involved in various abiotic stress responses and is required for plant resistance to pathogen infections. However, the role of NOA1 in plant-herbivore interactions has not been explored. We created NOA1-silenced Nicotiana attenuata plants (irNaNOA1). Compared with wild-type (WT) plants, irNaNOA1 plants had highly decreased photosynthesis rates. We further examined various traits important for plant defense against its specialist herbivore Manduca sexta by treating WT and irNaNOA1 plants with mechanical wounding and M. sexta oral secretions (OS). NOA1-silenced plants showed elevated levels of herbivory-induced jasmonic acid (JA), but decreased JA-isoleucine conjugate (JA-Ile) levels. The decreased JA-Ile levels did not result from compromised JAR (jasmonic acid resistant) activity in irNOA1 plants. Moreover, nitrogen-rich defensive compounds, nicotine and trypsin proteinase inhibitors, did not differ between WT and irNaNOA1 plants. In contrast, concentrations of most carbon-based defensive compounds were lower in these plants than in WT plants, although the levels of chlorogenic acid were not changed. Therefore, silencing NOA1 alters the allocation of carbon resources within the phenylpropanoid pathway. These data suggest the involvement of NOA1 in N. attenuata's defense against M. sexta attack, and highlight its role in photosynthesis, and biosynthesis of jasmonates and secondary metabolites.  相似文献   

16.
Because traits conferring resistance on herbivores can reduce fitness-associated traits, trade-offs may occur between tolerance and resistance responses. We examined these trade-offs in genotypes of Nicotiana attenuata that were transformed to silence trypsin proteinase inhibitor (TPI) production (AS-Natpi), an antiherbivore defense associated with (14%) reductions in seed production, and the jasmonate signal cascade that elicits these defenses (AS-Nalox3), by measuring stalk and axillary branch growth and seed production after two defoliation regimes and Manduca sexta larval attack to bottom or middle and top stalk leaves. Larval attack and defoliation at middle and top leaves depressed seed production and increased axillary branching more than at bottom leaves. AS-Nalox3 and AS-Natpi plants produced significantly longer (two- to fourfold) branches than did wild-type (WT) plants, results that are consistent with resource-based trade-offs between resistance and regrowth. Methyl jasmonate (MeJA) treatment of AS-Nalox3 plants restored WT branch growth, suggesting that jasmonic acid (JA) signalling suppresses regrowth and contributes to apical dominance. These results are consistent with the existence of JA- and resource-mediated trade-offs between regrowth and herbivore resistance traits.  相似文献   

17.
Both jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are thought to be significant components of the signaling pathway regulating the expression of plant defense genes in response to various stresses. JA and MeJA are plant lipid derivatives synthesized from [alpha]-linolenic acid by a lipoxygenase-mediated oxygenation leading to 13-hydroperoxylinolenic acid, which is subsequently transformed by the action of allene oxide synthase (AOS) and additional modification steps. AOS converts lipoxygenase-derived fatty acid hydroperoxide to allene epoxide, which is the precursor for JA formation. Overexpression of flax AOS cDNA under the regulation of the cauliflower mosaic virus 35S promoter in transgenic potato plants led to an increase in the endogenous level of JA. Transgenic plants had six- to 12-fold higher levels of JA than the nontransformed plants. Increased levels of JA have been observed when potato and tomato plants are mechanically wounded. Under these conditions, the proteinase inhibitor II (pin2) genes are expressed in the leaves. Despite the fact that the transgenic plants had levels of JA similar to those found in nontransgenic wounded plants, pin2 genes were not constitutively expressed in the leaves of these plants. Transgenic plants with increased levels of JA did not show changes in water state or in the expression of water stress-responsive genes. Furthermore, the transgenic plants overexpressing the flax AOS gene, and containing elevated levels of JA, responded to wounding or water stress by a further increase in JA and by activating the expression of either wound- or water stress-inducible genes. Protein gel blot analysis demonstrated that the flax-derived AOS protein accumulated in the chloroplasts of the transgenic plants.  相似文献   

18.
19.
20.
Arabidopside A isolated from Arabidopsis thaliana is a rare oxylipin, containing 12-oxophytodienoic acid (OPDA) and dinor-oxophytodienoic acid (dn-OPDA) which are known as precursors of jasmonic acid (JA) and methyl jasmonate (MeJA). The senescence-promoting effect of arabidopside A was examined by an oat (Avena sativa) leaf assay under dark or continuous light condition. Arabidopside A promoted senescence of oat leaves, and the promoting activity was more effective than for JA and OPDA, and as strong as for MeJA, which was well known to be a senescence promoter. These results suggest that arabidopside A plays important roles in leaf senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号