首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To increase our understanding of the physical nature of the Na+ and K+ forms of the Na+ + K+-dependent ATPase, thermal-denaturation studies were conducted in different types of ionic media. Thermal-denaturation measurements were performed by measuring the regeneration of ATPase activity after slow pulse exposure to elevated temperatures. Two types of experiments were performed. First, the dependence of the thermal-denaturation rate on Na+ and K+ concentrations was examined. It was found that both cations stabilized the pump protein. Also, K+ was a more effective stabilizer of the native state than was Na+. Secondly, a set of thermodynamic parameters was obtained by measuring the temperature-dependence of the thermal-denaturation rate under three ionic conditions: 60 mM-K+, 150 mM-Na+ and no Na+ or K+. It was found that ion-mediated stabilization of the pump protein was accompanied by substantial increases in activation enthalpy and entropy, the net effect being a less-pronounced increase in activation free energy.  相似文献   

2.
3.
We examined inhibitory effects of external multivalent cations Ni(2+), Co(2+), Cd(2+), La(3+), Mg(2+), and Mn(2+) on reverse-mode exchange of the K(+)-dependent Na(+)/Ca(2+) exchanger NCKX2 and the K(+)-independent exchanger NCX1 expressed in CCL-39 cells by measuring the rate of Ca(2+) uptake with radioisotope tracer and electrophysiological techniques. The apparent affinities for block of Ca(2+) uptake by multivalent cations was higher in NCKX2 than NCX1, and the rank order of inhibitory potencies among these cations was different. Additional experiments also showed that external Li(+) stimulated reverse-mode exchange by NCX1, but not NCKX2 in the presence of 5 mM K(+). Thus, both exchangers exhibited differential sensitivities to not only K(+) but also many other external cations. We attempted to locate the putative binding sites within the alpha motifs for multivalent cations by site-directed mutagenesis experiments. The cation affinities of NCKX2 were altered by mutations of amino acid residues in the alpha-1 motif, but not by mutations in the alpha-2 motif. These results contrast with those for NCX1 where mutations in both alpha-1 and alpha-2 motifs have been shown previously to affect cation affinities. Susceptibility tests with sulfhydryl alkylating agents suggested that the alpha-1 and alpha-2 motifs are situated extracellularly and intracellularly, respectively, in both exchangers. A topological model is proposed in which the extracellular-facing alpha-1 motif forms an external cation binding site that includes key residues N203, G207C, and I209 in NCKX2, while both alpha-1 and alpha-2 motifs together form the binding sites in NCX1.  相似文献   

4.
5.
Mitochondrial transport of K+ and Mg2+   总被引:1,自引:0,他引:1  
  相似文献   

6.
Two mechanisms of passive Ca2+ transport, Na+-Ca2+ exchange and Ca2+-Ca2+ exchange, were studied using highly-purified dog heart sarcolemmal vesicles. About 80% of the Ca2+ accumulated by Na+-Ca2+ exchange or Ca2+-Ca2+ exchange could be released as free Ca2+, while up to 20% was probably bound. Na+-Ca2+ exchange was simultaneous, coupled countertransport of Na+ and Ca2+. The movement of anions during Na+-Ca2+ exchange did not limit the initial rate of Na+-Ca2+ exchange. Na+-Ca2+ exchange was electrogenic, with a reversal potential of about -105 mV. The apparent flux ratio of Na+-Ca2+ exchange was 4 Na+:1 Ca2+. Coupled cation countertransport by the Na+-Ca2+ exchange mechanism required a monovalent cation gradient with the following sequence of ion activation: Na+ much greater than Li+ greater than Cs+ greater than K+ greater than Rb+. In contrast to Na+-Ca2+ exchange, Ca2+-Ca2+ exchange did not require a monovalent cation gradient, but required the presence of Ca2+ plus a monovalent cation on both sides of the vesicle membrane. The sequence of ion activation of Ca2+-Ca2+ exchange was: K+ much greater than Rb+ greater than Na+ greater than Li+ greater than Cs+. Na+ inhibited Ca2+-Ca2+ exchange when Ca2+-Ca2+ exchange was supported by another monovalent cation. Both Na+-Ca2+ exchange and Ca2+-Ca2+ exchange were inhibited, but with different sensitivities, by external MgCl2, quinidine, or verapamil.  相似文献   

7.
Yang  Cheng  Pu  Shiming  Zhu  Huan  Qin  Wanying  Zhao  Hongxia  Guo  Ziqi  Zhou  Zuping 《Molecular and cellular biochemistry》2022,477(3):897-914
Molecular and Cellular Biochemistry - Neural stem cells (NSCs) are responsible for maintaining the nervous system and repairing damages. Utility of NSCs could provide a novel solution to treat...  相似文献   

8.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

9.
Large-conductance Ca2+- and voltage-gated Slo1 BK channels are allosterically activated by depolarization and intracellular ligands such as Ca2+. Of the two high-affinity Ca2+ sensors present in the channel, the RCK1 sensor also mediates H+-dependent activation of the channel. In this study, we examined the comparative mechanisms of the channel activation by Ca2+ and H+. Steady-state macroscopic conductance-voltage measurements as well as single-channel openings at negative voltages where voltage-sensor activation is negligible showed that at respective saturating concentrations Ca2+ is more effective in relative stabilization of the open conformation than H+. Calculations using the Debye-Hückel formulation suggest that small structural changes in the RCK1 sensor, on the order of few angstroms, may accompany the H+-mediated opening of the channel. While the efficacy of H+ in activation of the channel is less than that of Ca2+, H+ more effectively accelerates the activation kinetics when examined at the concentrations equipotent on macroscopic voltage-dependent activation. The RCK1 sensor therefore is capable of transducing the nature of the ligand bound and transmits qualitatively different information to the channel's permeation gate.  相似文献   

10.
11.
An analysis of the influence of Na+ and K+ on the kinetics of Na+-ATPase in broken membrane preparations from bovine brain is presented with particular emphasis on the effect of the cations on the binding and splitting of the substrate MgATP and on the derivation of a detailed kinetic model for that interaction. It was found that the enzyme in the absence of Na+ and K+, but in the presence of 7 mM free Mg2+, at pH 7.4 (37 degrees C) exhibits an ouabain-sensitive ATPase activity. The simplest model quantitatively compatible with all the data involves two different, interconvertible (conformational) forms of the enzyme, E1 and E'1, with the following properties: The E1 form does not bind K+ but has three independent and equivalent high-affinity sites (Kd = 5.6 mM) for Na+. It binds and hydrolyzes substrate only when two or three sodium ions are bound to it. The E'1 form binds and hydrolyzes the substrate only in the absence of monovalent cations. It is competitively inhibited by K+ (Kd = 0.23 mM), and this inhibition is further enhanced by binding of Na+ to the K+-bound form at two equivalent, independent sites (Kd = 12 mM). It is suggested that the E'1 form is the Mg2+-induced conformational state of the enzyme observed by others, which differs from the usually encountered E1 and E2 forms. The model allows the calculation of ATP-binding and ADP-releasing rate constants for the E1-form for later comparison with corresponding rate constants for the (na+ + K+)-ATPase (following paper).  相似文献   

12.
13.
The effects of altered external sodium and potassium concentrations on steady state, active Na+ + K+ transport in Ehrlich ascites tumor cells have been investigated. Membrane permeability to Na+ and K+, intracellular [Na+] and [K+], and membrane potential were measured. Active cation fluxes were calculated as equal and membrane potential were measured. Active cation fluxes were calculated as equal and opposite to the net, diffusional leak fluxes. Elevation of external K+ (6–60 Mm)by equivalent replacement of Na+ (154–91 mM) inhibits both active Na+ and K+ fluxes, but not proportionally. This results in a decrease of the coupling ratio (rp = -Jkp/J) as external K+ is increased. Elevation of external K+ (3–68 mM) at constant Na+ (92mM) inbibits J, but is without effect on J. The coupling ratio declines from 1.01 ± 0.14 to 0.07 ± 0.05, a 14-fold alteration. Reduction of external Na+ (154–25 mM) at constant K+ (6mM) depresses J, but is without effect on J. The coupling ratio increases from 0.63 ± 0.04 at 154 mM Na+ to 4.5 ± 2.04 at 25 mM Na+. The results of this investigation are consistent with the independent regulation of active cation fluxes by the transported species. Kinetic analysis of the data indicates that elevation of external sodium stimulates active sodium efflux by interacting at “modifier sites” at the outer cell surface. Similarly, external potassium inhibits active potassium influx by interaction at separate modifier sites.  相似文献   

14.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site.  相似文献   

15.
(Na+ + K+)-ATPase was isolated from the grey matter of brain and incorporated into liposomes. Most of the reconstituted enzyme was oriented 'inside-out' with respect to its in vivo orientation and externally added ATP promoted Na+ uptake that was inhibitable by internally trapped ouabain. Using the same proteoliposomes, an Na+ - Ca2+ exchange system was observed as indicated by the following pieces of evidence. (1) The Na+ gradient provided the only readily apparent driving force for acceleration of Ca2+ accumulation into proteoliposomes. (2) The antiporter was specific for Ca2+, high Mg2+ excess did not inhibit Ca2+ antiport. (3) The Na+ efflux was dependent on the extravesicular Ca2+ concentration. (4) The Na+ efflux was not inhibited by tetrodotoxin. The demonstrated Na+ - Ca2+ exchange could not be related to (Na+ + K+)-ATPase protein, since it was not purified with (Na+ + K+)-ATPase, as followed from transport studies with liposomes containing (Na+ + K+)-ATPase of different specific activity. The results strongly indicate that plasma membranes isolated from the grey matter of brain contain an Na+ - Ca2+ exchange system and that the proteoliposomes are suitable for further purification of the carrier molecule.  相似文献   

16.
Abstract— A comparison was made between K+-Mg2+ activated p-nitrophenyl phosphatase and Na+-K+-Mg2+ activated adenosine triphosphatase with a solubilized enzyme preparation from a membrane fraction of cerebral cortex. The NPPase showed activity even in the absence of phospholipid, whereas the ATPase required the lipid for its activity. More varied types of phospholipids were effective in activating the NPPase than the ATPase, and with each phospholipid the extent and the pattern of the NPPase activation differed from that of the ATPase. By deoxycholate treatment the pH optimum of the NPPase was shifted independently from the pH optimum shift of the ATPase. The specific activity ratio of the NPPase to the ATPase was not constant during purification. These two enzymes were, however, not separable with ammonium sulphate fractionation, and their thermo-lability was identical regardless of the presence of phospholipid. The results suggested two possibilities: (1) the NPPase is a separate enzyme entity from the ATPase; (2) although the NPPase is a part of the ATPase system, the mechanism of action of lipids on the former part differs from that on the rest of the system.  相似文献   

17.
The influence of H+ and K+ on the partial reactions and transport of gastric (H+ + K+)-ATPase was studied. Using transient kinetics, the effects and sidedness of effects of H+ and K+ on formation and breakdown of phosphoenzyme were determined in intact and lyophilized reconstituted vesicles in the absence and presence of gramicidin. Whereas increasing H+ concentrations on the ATP-binding face of the vesicles accelerates phosphorylation, increasing K+ concentrations inhibits phosphorylation. Increasing H+ on this side reduces K+ inhibition of the phosphorylation rate. At low ATP/K+ ratios, the phosphorylation step can become rate-limiting for steady state hydrolysis. Decreasing H+ accelerates dephosphorylation in the absence of K+. K+ on the internal or luminal face of the vesicles accelerates dephosphorylation, and this rate is reduced with increasing H+ concentrations. At low internal pH, K+-dependent dephosphorylation may become rate-limiting. H+ transport measurements using fluorescence quenching of acridine orange show that whereas internal K+ is required for H+ transport, external K+ inhibits the rate of formation of a pH gradient, and the inhibition is reduced by decreasing medium pH. The pH optimum for ATPase activity and transport correlated in the vesicles, and the K0.5 of K+ for transport correlated with data for intact parietal cells.  相似文献   

18.
19.
The activity coefficients of glycylglycine in four aqueous electrolyte solutions (+NaCl, +NaBr, +KCl and +KBr) were obtained at 298.2 K. The mean ionic activity coefficient of the electrolyte in aqueous solutions containing the peptide was determined from measurements of the potential differences of a cation and an anion ion-selective-electrode, each vs. a double junction reference electrode. The results show that the nature of the anion has a major effect on the activity coefficients of glycylglycine. Comparison of activity coefficient data for glycylglycine with literature data for glycine, both in aqueous NaCl solutions, indicates that the effect of the electrolyte is larger for the peptide than for the amino acid. For the peptide, in all cases, the effect of the electrolyte is more important at low molalities of the electrolyte. The Wilson equation was used to correlate the activity coefficient data obtained. The correlation results were satisfactory for the region of concentrated electrolyte.  相似文献   

20.
In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+]e and [Ca2+]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+- induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号