首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new dinuclear copper(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐N′‐ (2‐carbo‐xylatophenyl)oxamide (H3dmapob), and endcapped with 2,2′‐diamino‐4,4′‐bithiazole (dabt), namely [Cu2(dmapob)(dabt)(CH3OH)(pic)]·(DMF)0.75·(CH3OH)0.25 has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single‐crystal X‐ray diffraction. In the crystal structure, both copper(II) ions have square–pyramidal coordination geometries. The Cu···Cu separation through the oxamido bridge is 5.176(9) Å. A two‐dimensional supramolecular framework is formed through hydrogen bonds and π–π stacking interactions. The reactivities toward herring sperm DNA and bovine serum albumin (BSA) show that the complex can interact with the DNA via intercalation mode and bind to the BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines. The influence of different bridging ligands in dinuclear complexes on the DNA‐ and BSA‐binding properties as well as anticancer activities is preliminarily discussed.  相似文献   

2.
Cyclam‐based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam‐based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal‐based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV–vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern–Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1‐anilinonaphthalene‐8‐sulphonic acid (1,8‐ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α‐helical content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A new one‐dimensional (1D) copper(II) coordination polymer {[Cu2(dmaepox)(dabt)](NO3)·0.5 H2O}n, where H3dmaepox and dabt denote N‐benzoato‐N′‐(3‐methylaminopropyl)oxamide and 2,2′‐diamino‐4,4′‐bithiazole, respectively, was synthesized and characterized by single‐crystal X‐ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis‐oxamido and carboxylato groups to form a 1‐D coordination polymer with the corresponding Cu···Cu separations of 5.1946(19) and 5.038(2) Å. There is a three‐dimensional supramolecular structure constructed by hydrogen bonding and π–π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS‐DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines.  相似文献   

4.
A new tetracopper(II) complex bridged both by oxamido and carboxylato groups, namely [Cu4(dmaepox)2(bpy)2](NO3)2·2H2O, where H3dmaepox and bpy represent N‐benzoato‐N′‐ (3‐methylaminopropyl)oxamide and 2,2′‐bipyridine, was synthesized, and its structure reveals the presence of a centrosymmetric cyclic tetracopper(II) cation assembled by a pair of cis‐dmaepox3–‐ bridged dicopper(II) units through the carboxylato groups, in which the endo‐ and exo‐copper(II) ions bridged by the oxamido group have a square‐planar and a square‐pyramidal coordination geometries, respectively. The aromatic packing interactions assemble the complex molecules to a two‐dimensional supramolecular structure. The reactivity toward DNA and protein bovine serum albumin (BSA) indicates that the complex can interact with herring sperm DNA through the intercalation mode and the binding affinity is dominated by the hydrophobicity and chelate ring arrangement around copper(II) ions and quenches the intrinsic fluorescence of BSA via a static process. The cytotoxicity of the complex shows selective cancer cell antiproliferative activity.  相似文献   

5.
A new μ‐oxamido‐bridged dicopper(II) complex, [Cu2(papo)(H2O)‐ (phen)]Cl·CH3OH·H2O, where H3papo and phen represent N‐(2‐hydroxyphenyl)‐N'‐(3‐aminopropyl)oxamide and 1,10‐phenanthroline, respectively, has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single‐crystal X‐ray diffraction. The complex crystallizes in the triclinic space group P‐1. Each copper(II) ion is located in a slightly distorted square‐pyramidal environment. The Cu···Cu distance through the oxamide bridge is 5.1848(7) Å. The three‐dimensional supramolecular structure is built‐up by hydrogen bonds and π–π stacking interactions. The dicopper(II) complex exhibits cytotoxic activity against the SMMC‐7721 and A549 cell lines. The reactivity toward herring sperm DNA and protein bovine serum albumin (BSA) reveals that the dicopper(II) complex can interact with the DNA by the intercalation mode, and effectively quench the intrinsic fluorescence of BSA via a static mechanism. The influence of hydrophobicity of the bridging ligand on DNA‐binding properties and in vitro cytotoxic activities of this kind of dicopper(II) complexes was investigated.  相似文献   

6.
A new oxamido‐bridged bicopper(II) complex, [Cu2(pdpox)(bpy)(CH3OH)](ClO4), where H3pdpox and bpy stand for N‐(2‐hydroxyphenyl)‐N′‐[3‐(diethylamino)propyl]oxamide and 2,2′‐bipyridine, respectively, has been synthesized and characterized by elemental analyses, molar conductivity measurements, infrared and electronic spectra studies, and X‐ray single crystal diffraction. In the crystal structure, the pdpox3? ligand bridges two copper(II) ions as cisoid conformation. The inner copper(II) ion has a {N3O} square‐planar coordination geometry, while the exo‐ one is in a {N2O3} square‐pyramidal environment. There are two sets of interpenetrating two‐dimensional hydrogen bonding networks parallel to the planes (2 1 0) and (), respectively, to form a three‐dimensional supramolecular structure. The bicopper(II) complex exhibits cytotoxic activity against the SMMC7721 and A549 cell lines. The reactivity toward herring sperm DNA and bovine serum albumin revealed that the bicopper(II) complex can interact with the DNA by intercalation mode, and the complex binds to protein BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:412‐424, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21504  相似文献   

7.
Serum albumins being the most abundant proteins in the blood and cerebrospinal fluid are significant carriers of essential transition metal ions in the human body. Studies of copper (II) complexes have gained attention because of their potential applications in synthetic, biological, and industrial processes. Study of binding interactions of such bioinorganic complexes with serum albumins improves our understanding of biomolecular recognition process essential for rational drug design. In the present investigation, we have applied quantitative approach to explore interactions of novel synthesized copper (II) complexes viz. [Cu(L1)(L2)ClO4] (complex I), [Cu(L2)(L3)]ClO4] (complex II) and [Cu(L4)2(H2O)2] (complex III) with bovine serum albumin (BSA) to evaluate their binding characteristics, site and mode of interaction. The fluorescence quenching of BSA initiated by complexation has been observed to be static in nature. The binding interactions are endothermic driven by entropic factors as confirmed by high sensitivity isothermal titration calorimetry. Changes in secondary and tertiary structure of protein have been studied by circular dichroism and significant reduction in α-helical content of BSA was observed upon binding. Site marking experiments with warfarin and ibuprofen indicated that copper complexes bind at site II of the protein.  相似文献   

8.
The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)‐tetra‐(((2‐aminoethylamino)methyl)phenoxy)phthalocyaninato‐zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug–albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern–Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non‐radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The polymer–cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2′‐bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico‐chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer–cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer–cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF‐7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer–cobalt(III) complex and for its possible utilization in anticancer therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

11.
The interaction of the cationic Gemini surfactant hexamethylene‐1,3‐bis (tetradecyldimethylammonium bromide) (14‐6‐14) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra and three‐dimensional (3D) fluorescence spectra. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that hydrophobic forces were the predominant intermolecular forces between BSA and the surfactant. Competitive experiments and the number of binding sites calculation show that 14‐6‐14 can be inserted in site‐II (in subdomain IIIA) of BSA. The effect of 14‐6‐14 on the conformation of BSA was evaluated by synchronous fluorescence spectroscopy and 3D fluorescence spectral methods. The results show that the conformation of BSA was changed dramatically in the presence of 14‐6‐14, by binding to the Trp and Try residues of BSA. The investigation provides interaction between BSA and 14‐6‐14 as a model for molecular design and industrial research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

In this study, the interactions of a novel metal complex [Dy(bpy)2Cl3.OH2] (bpy is 2,2'-bipyridine) with fish salmon DNA (FS-DNA) and bovine serum albumin (BSA) were investigated by experimental and theoretical methods. All results suggested significant binding between the Dy(III) complex with FS-DNA and BSA. The binding constants (Kb), Stern-Volmer quenching constants (KSV) of Dy(III)-complex with FS-DNA and BSA at various temperatures as well as thermodynamic parameters using Van’t Hoff equation were obtained. The experimental results from absorption, ionic strength, iodide ion quenching, ethidium bromide (EtBr) quenching studies and positive ΔH? and ΔS? suggested that hydrophobic groove-binding mode played a predominant role in the binding of Dy(III)-complex with FS-DNA. Indeed, the molecular docking results for DNA-binding were in agreement with experimental data. Besides, the results found from experimental and molecular modeling indicated that the Dy(III)-complex bound to BSA via Van der Waals interactions. Moreover, the results of competitive tests by phenylbutazone, ibuprofen, and hemin (as a site-I, site-II and site-III markers, respectively) considered that the site-III of BSA is the most possible binding site for Dy(III)-complex. In addition, Dy(III) complex was concurrently screened for its antimicrobial activities. The presented data provide a promising platform for the development of novel metal complexes that target nucleic acids and proteins with antimicrobial activity.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
[Pd{(C,N)–C6H4CH2NH(Et) (Qu)] (2) and [Pd{(C,N)–C6H4CH2NH(Et) (Nar)] (3) (Qu = Quercetin, Nar = Naringin) mononuclear palladium (II) complexes have been synthesized and characterized using elemental analysis, IR and electronic spectroscopy. The interaction of the prepared complexes with calf thymus DNA and bovine serum albumin (BSA), monitored by UV–visible and fluorescence titrations, respectively, have been carried out to better understand the mode of their action under biological conditions. Intercalative binding mode between the complexes and DNA is suggested by the binding constant (Kb) values of 2.5 × 106 and 3.2 × 106 for complexes 2 and 3, respectively. In particular, the in vitro cytotoxicity of the complexes on two cancer cells lines (bladder carcinoma TCC and breast cancer MCF7) showed that the compounds had broad spectrum, anti-cancer activity with low IC50 values and the order of in vitro anticancer activities is consistent with the DNA-binding affinities. In the meantime, the quenching of tryptophan emission with the addition of complexes using BSA as a model protein indicated the protein binding ability. The quenching mechanisms of BSA by the complexes were static processes, according to the results obtained. The competitive binding using Warfarin, Digoxin and Ibuprofen site markers, which contain definite biding sites, demonstrated that the complexes bind to site I on BSA. Ultimately, the binding sites of DNA and BSA with the complexes have been determined by molecular modelling studies.  相似文献   

15.
Zn(II) complexes with norfloxacin (NOR) in the absence or in the presence of 1,10-phenanthroline (phen) were obtained and characterized. In both complexes, the ligand NOR was coordinated through a keto and a carboxyl oxygen. Tetrahedral and octahedral geometries were proposed for [ZnCl2(NOR)]·H2O (1) and [ZnCl2(NOR)(phen)]·2H2O (2), respectively. Since the biological activity of the chemicals depends on the pH value, pH titrations of the Zn(II) complexes were performed. UV spectroscopic studies of the interaction of the complexes with calf-thymus DNA (CT DNA) have suggested that they can bind to CT DNA with moderate affinity in an intercalative mode. The interactions between the Zn(II) complexes and bovine serum albumin (BSA) were investigated by steady-state and time-resolved fluorescence spectroscopy at pH 7.4. The experimental data showed static quenching of BSA fluorescence, indicating that both complexes bind to BSA. A modified Stern–Volmer plot for the quenching by complex 2 demonstrated preferential binding near one of the two tryptophan residues of BSA. The binding constants obtained (K b ) showed that BSA had a two orders of magnitude higher affinity for complex 2 than for 1. The results also showed that the affinity of both complexes for BSA was much higher than for DNA. This preferential interaction with protein sites could be important to their biological mechanisms of action. The analysis in vitro of the Zn(II) complexes and corresponding ligand were assayed against Trypanosoma cruzi, the causative agent of Chagas disease and the data showed that complex 2 was the most active against bloodstream trypomastigotes.  相似文献   

16.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

17.
A new trinickel(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐ N ′‐(2‐hydroxylphenyl)oxamido (H3pdmapo), namely [Ni3(pdmapo)2(H2O)2]?4CH3OH, was synthesized and characterized by X‐ray single‐crystal diffraction and other methods. In the molecule, two symmetric cis‐ pdmapo3? mononickel(II) complexes as a “complex ligand” using the carbonyl oxygen atoms coordinate to the center nickel(II) ion situated on an inversion point. The Ni···Ni distance through the oxamido bridge is 5.2624(4) Å. The center nickel(II) ion and the lateral ones have octahedral and square‐planar coordination geometries, respectively. In the crystal, a three‐dimensional supramolecular network dominated by hydrogen bonds is observed. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS‐DNA) through the intercalation mode and quench the intrinsic fluorescence of BSA via a static mechanism. The in vitro anticancer activities suggested that the complex is active against the selected tumor cell lines.  相似文献   

18.
In order to evaluate biological potential of a novel synthesized complex [Nd(dmp)2Cl3.OH2] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (Kb) for interaction of Nd(III) complex and FS–DNA is calculated by UV–Vis (Kb = 2.7 ± 0.07 × 105) and fluorescence spectroscopy (Kb = 1.13 ± 0.03 × 105). The Stern–Volmer constant (KSV), thermodynamic parameters including free energy change (ΔG°), enthalpy change (?H°), and entropy change (?S°), are calculated by fluorescent data and Vant’ Hoff equation. The experimental results show that the complex can bind to FS–DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ?S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.  相似文献   

19.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

20.
Two copper(II) terpyridine complexes, [Cu(atpy)(NO3)(H2O)](NO3) ? 3H2O ( 1 ) and [Cu(ttpy)(NO3)2] ( 2 ) (atpy = 4′‐p‐N9‐adeninylmethyl‐phenyl‐2,2′:6,2″‐terpyridine; ttpy = 4′‐p‐tolyl‐2,2′:6,2″‐terpyridine) exhibited high cytotoxicity, with average ten times more potency than cisplatin against the human cervix carcinoma cell line (HeLa), the human liver carcinoma cell line (HepG2), the human galactophore carcinoma cell line (MCF7), and the human prostate carcinoma cell line (PC‐3). The cytotoxicity of the complex 1 was lower than that of the complex 2 . Both complexes showed more efficient oxidative DNA cleavage activity under irradiation with UV light at 260 nm than in the presence of ascorbic acid. Especially, complex 1 exhibited evident photoinduced double‐stranded DNA cleavage activity. The preliminary mechanism experiments revealed that hydrogen peroxide was involved in the oxidative DNA damage induced by both complexes. From the absorption titration data, the DNA‐binding affinity of the complexes with surpersoiled plasmid pUC19 DNA, polydAdT, and polydGdC was calculated and complex 2 showed higher binding affinity than complex 1 with all these substrates. The DNA cleavage ability and DNA‐binding affinity of both complexes depended on the substituent group on the terpyrdine ligands. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:295–302, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20292  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号