首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
滨海电厂温排水对浮游动物分布的影响   总被引:13,自引:0,他引:13  
为了评估滨海电厂温排水对浮游动物的影响程度,选择了运营多年的浙江嘉兴电厂邻近海域,于2006年5月大、小潮期间进行了浮游动物分布现状调查,并选取东海近海常见浮游动物优势种中华哲水蚤(Calanus sinicus)、细巧华哲水蚤(Sinocalanus tenellus)、中华异水蚤(Acartiella sinensis)和近缘大眼剑水蚤(Corycaeus affinis)进行了24h半致死温度的耐热性实验.结果表明:调查海域共鉴定出浮游动物26种,其中大潮期间22种,小潮期间23种,主要为近岸低盐类群,优势种为虫肢歪水蚤(Tortanus vermiculus)、真刺唇角水蚤(Labidorcera euchaeta)等;浮游动物生物量虽呈近岸低、离岸高的分布状态,但密度相对均匀;长额刺糠虾(Acanthomysis longirostris)和仔鱼决定着调查海域生物量的分布特征,虫肢歪水蚤和真刺唇角水蚤则决定着密度的分布特征;实验结果证明,浮游动物有较高的热耐受力,7℃温升范围内4种实验物种均无个体死亡;滨海电厂温排水对排水口附近活动能力强、质量大的浮游动物种类的分布有较大影响,对活动能力弱的中、小型浮游动物种类分布几乎没有影响.  相似文献   

2.
滨海电厂冷却水余热和余氯对中华哲水蚤的影响   总被引:2,自引:0,他引:2  
依据滨海电厂冷却系统的实际运作情况,模拟研究了滨海电厂冷却水余热和余氯对中华哲水蚤的影响.结果表明:中华哲水蚤的热忍受能力随暴露时间延长而降低,随驯化温度升高而升高.驯化温度为16 ℃~27 ℃的中华哲水蚤在持续受到15、30、45 min热冲击及持续升温暴露24和48 h的致死温度分别为29.9 ℃~31.7 ℃、29.4 ℃~31.0 ℃、28.9 ℃~30.3 ℃和26.9 ℃~28.5 ℃、26.4 ℃~28.0 ℃.当驯化温度升高到一定程度后,其热忍受能力不再上升.电厂冷却水中余氯对中华哲水蚤的毒性随驯化温度升高、升温幅度增大及暴露时间延长而增强.  相似文献   

3.
两种桡足类短期热冲击的高起始致死温度值   总被引:1,自引:0,他引:1  
于2007年4月研究了亚热带海域近海种桡足类中华哲水蚤(Calanus sinicus Brodsky)和真刺唇角水蚤(Labidocera euchaeta Giesbrecht)在不同驯化温度下热冲击15、30、45 min后的24 h高起始致死温度(upper incipient lethal temperature,24-h UILT50).结果表明:(1)在相同驯化温度下,两种桡足类短期热冲击24-h UILT50随暴露时间的延长而降低;(2)在相同暴露时间下,两种桡足类短期热冲击24-h UILT50随驯化温度的上升均有不同程度的上升,但这种升高的趋势会随驯化温度的上升而变缓,且趋于一固定值后不再上升;(3)中华哲水蚤在暴露时间为15、30、45 min的24 h最高起始致死温度(ultimate upper incipient lethal temperature,24-h UUILT50)分别为31.7、31.0、30.3℃,真刺唇角水蚤在暴露15、30、45 min时的24-h UUILT50分别为36.5、36.0、35.4℃;(4)在相同驯化温度和暴露时间条件下,真刺唇角水蚤对短期热冲击的耐受性显著强于中华哲水蚤.  相似文献   

4.
采用浮游生物 I 型网与 II 型网 , 在象山港进行了浮游动物季节性取样, 结合现场监测环境因子, 分析了浮游动物群落结构的时空差异及其环境驱动因子。结果显示: 共得 12 类浮游动物幼体、 75 种浮游动物。象山港浮游动物小型化特征明显 , 平均丰度 3 796.7 ind⋅m–3。周年优势种类是针刺拟哲水蚤 (Paracalanus aculeatus)、强额拟哲水蚤(Paracalanuscrassirostris)、短角长腹剑水蚤 (Oithona brevicornis)和桡足幼体, 其中 , 针刺拟哲水蚤为时空群落贡献最大物种。 ANOSIM 和SIMPER 分析显示, 浮游动物群落的季节性差异显著, 主要判别种类有: 太平洋纺锤水蚤(Acartia pacifica)、长尾基齿哲水蚤(Clausocalanus furcatus)、墨氏胸刺水蚤(Centropages mcmurrichi)、强额拟哲水蚤、伪长腹剑水蚤(Oithona fallax)、瘦尾胸刺水蚤(Centropages tenuiremis)、背针胸刺水蚤(Centropages dorsispinatus)和瓣鳃类幼虫。浮游动物群落空间上也存在显著差异 , 港口区以大个体或适高盐为主 , 港底区以小个体和幼虫为主。空间上主要判别种类是 : 强额拟哲水蚤、太平洋纺锤水蚤、短角长腹剑水蚤、桡足类幼体和瓣鳃类幼虫。基于距离的冗余分析(dbRDA, Distance-based redundancy analysis)显示, 驱动浮游动物群落结构变化的主要因子是水温、盐度和 pH, 3 个变量可解释浮游动物群落结构的 53.0%, 其中 , 水温是驱动季节群落变化的主要因子, 而驱动空间群落变化的主要因子是盐度和 pH。  相似文献   

5.
探讨了辽宁盘锦辽河三角洲地区中华绒螯蟹(Eriocheir sinensis)生态育苗池中出现的近亲真宽水蚤(Eurytemor affinis)和细巧华哲水蚤(Sinocalanus tenellus)与中华绒螯蟹幼体的关系.结果表明:近亲真宽水蚤和细巧华哲水蚤都严重地影响Ⅰ期中华绒螯蟹溞状幼体的成活率,其密度越大,Ⅰ期溞状幼体的成活率就越低(P<0.01); Ⅲ期中华绒螯蟹溞状幼体可捕食桡足类无节幼体,且捕食量随着无节幼体密度增加而变大(P<0.01);Ⅴ期中华绒螯蟹溞状幼体和大眼幼体容易捕食到近亲真宽水蚤而很难捕食到细巧华哲水蚤;蟹苗池中大眼幼体的产量与育苗初期池塘中桡足类的数量呈负相关关系,且不同桡足类密度下大眼幼体收获量差异极显著(P<0.01).提出了控制和利用蟹苗池中桡足类的措施.  相似文献   

6.
盐碱池塘细巧华哲水蚤对浮游植物的摄食生态研究   总被引:10,自引:4,他引:6  
赵文  董双林 《生态学报》2002,22(5):682-687
利用常规显微镜直接计数法和叶绿素 a法研究了盐碱池塘细巧华哲水蚤 ( Sinocalanustenellus)对浮游藻类的原位摄食率及其影响因素。测得该水蚤对水柱浮游植物的滤水率为 1 .73~ 1 5 5 .1 6μl/ ( ind.· h) ,摄食率为 92~ 2 5 38cell/( ind.· h)或 0 .7~ 2 7.7ng C/ ( ind.· h)。两种方法测定的滤水率和摄食率基本相符 ( p>0 .5 ,t检验 )。该水蚤可有选择地滤食诸如小色球藻、光甲藻、绿裸藻 ,单生卵囊藻和小环藻等 ,其选择性指数分别为 0 .81、0 .75、0 .72、0 .6 1和 0 .35。不同光处理下细巧华哲水蚤的滤食率多数情况是无光时摄食率高。在本实验的条件下该水蚤在饥饿后的滤水率和摄食率与正常情况相比均显著降低 ( P<0 .0 1 ,t检验 )。  相似文献   

7.
长江口不同水域浮游动物数量特征比较   总被引:9,自引:2,他引:7  
徐韧  李亿红  李志恩  王金辉 《生态学报》2009,29(4):1688-1696
为了分析长江口浮游动物与环境的关系,从2004年到2006年分别于5月份(平水期)和8月份(枯水期)在长江口水域共设22个观测站进行6次海洋调查.结果显示:长江口浮游动物丰度8月份高于5月份,北支略大于南支,长江口口外大于口内. 在大多数情况下,5月份丰度近海略大于咸淡交错水域,8月份相反.长江口浮游动物丰度和分布具有不确定性,水团的季节变化,外海水和冲淡水交汇的位置是影响长江口浮游动物分布特征的重要因素.对长江口南支水域而言,5月份中华华哲水蚤(Sinocalanus sinensis), 8月份火腿许水蚤(Schmackeria poplesia)是最主要的优势种;咸淡交错水域和北支优势种种类较多,真刺唇角水蚤(Labidocera euchaeta)在5月份和8月份都是主要优势种,其次是小拟哲水蚤(Paracalanus parvus).针刺拟哲水蚤(Paracalanus aculeatus),背针胸刺水蚤(Centropages dorsispinatus),太平洋纺锤水蚤(Acartia pacifica)和火腿许水蚤仅为8月份的主要优势种.对近海而言,中华哲水蚤(Calanus sinicus)是主要的优势种,其次是五角水母(Muggiaea atlantica)和肥胖箭虫(Sagitta enflata).  相似文献   

8.
根据2008年6月在吕泗渔场(31.90°N-32.10°N、121.70°E-121.95°E)海域生态环境调查资料,分析了该区饵料浮游动物种类分布、优势种、数量分布、多样性等特征。结果表明:该区共出现饵料浮游动物31种(不含浮游幼体和腔肠动物),种类数和丰度均以桡足类占据优势;该区总生物量均值为845.54mg.m-3,其中大潮时为895.58mg.m-3,分布趋势为北部高于南部,小潮时为795.49mg.m-3,分布趋势为中部较高;6月吕泗渔场饵料浮游动物优势种分别是真刺唇角水蚤(Labidocera euchaeta)、中华哲水蚤(Calanus sini-cus)、小拟哲水蚤(Paracalanus parvus)、太平洋纺锤水蚤(Acartia pacifica)、火腿许水蚤(Schmackeria poplesia)、长轴螺(Peraclis reticulata)、长额刺糠虾(Acanthomysis longirostris);大潮时真刺唇角水蚤和中华哲水蚤优势度最高均为0.19,小潮时真刺唇角水蚤优势度最高为0.40;在吕泗渔场,6月饵料浮游动物生物量较高,优势种数较多,反映出该渔场小黄鱼饵料环境的稳定性,为小黄鱼幼体生长提供了良好的饵料条件。  相似文献   

9.
长江口棘头梅童鱼食物组成和摄食习性的季节变化   总被引:4,自引:0,他引:4  
棘头梅童鱼是长江口水域的常见小型经济鱼类,具有一定的捕捞价值.为了解长江口棘头梅童鱼食物组成和摄食习性的季节变化,本研究利用胃含物分析法对2013年11月—2014年8月在长江口水域捕获的棘头梅童鱼样本进行了分析.结果表明:长江口棘头梅童鱼全年摄食的饵料生物有8目30种,其中虾类(游泳亚目)是主要饵料生物,相对重要性指数百分比(IRI%)为38.5,优势指数(Ip)为79.1;其次为糠虾目和磷虾目.全年饵料生物中的主要优势种类为葛氏长臂虾、安氏白虾、脊尾白虾、长额刺糠虾、短额刺糠虾、光背节鞭水虱和中华哲水蚤等.饵料生物优势种存在季节差异,春季和夏季的主要优势种均为葛氏长臂虾、安氏白虾和短额刺糠虾,秋季主要优势种为长额刺糠虾、短额刺糠虾和脊尾白虾,冬季主要优势种为葛氏长臂虾、中华哲水蚤和中华假磷虾.长江口棘头梅童鱼全年空胃率为10.4%,冬季最高,秋季最低;全年平均胃饱满系数为0.6%,冬季最低,春季最高,摄食习性存在季节变化.  相似文献   

10.
崇明东滩潮间带潮沟浮游动物的种类组成及多样性   总被引:4,自引:0,他引:4  
为了揭示潮间带潮沟水域浮游动物的多样性, 作者于2008年4–12月在崇明东滩选取6条潮沟共18个站点进行4个季节的浮游动物采样调查。检获到浮游动物44种, 隶属于6个类群, 其中桡足类占绝对优势, 达总种类数的79.5%。分析了浮游动物的种类组成、优势种、群落结构及物种多样性等生态特征参数的季节变化。优势种有9种, 春季以细巧华哲水蚤(Sinocalanus tenellus)优势度最高, 夏季以火腿许水蚤(Schmackeria poplesia)优势度最高, 秋季以火腿许水蚤和中华华哲水蚤(Sinocalanus sinensis)优势度较高, 冬季则以四刺窄腹剑水蚤(Limnoithona etraspina)和中华华哲水蚤的优势度较高。多样性指数显示, Shannon-Wiener指数(H′)值以夏冬季较高, 物种丰富度指数(d)值以夏秋季较高, Pielou均匀度指数(J′)值以冬季最高。与崇明岛附近的长江口北港北支水域已有的研究结果相比, 种类组成差异较大, 仅有6个共有种。浮游动物的生态特征与潮汐关系密切, 涨潮时物种多样性略高于落潮时, 涨潮和落潮时优势种的种类及优势度也均呈现出一定差异。盐度、温度、径流及潮流等环境因素对潮沟浮游动物的时空分布产生了重要影响。  相似文献   

11.
Adaptative responses of ectothermic organisms to thermal variation typically involve the reorganization of membrane glycerophospholipids (GPLs) to maintain membrane function. We investigated how acclimation at 15, 20 and 25 degrees C during preimaginal development influences the thermal tolerance and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60 h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance (1h at subzero temperatures) was also slightly better in the cold acclimated flies. LT50 shifted down by ca 1.5 degrees C in 15 degrees C-acclimated flies in comparison to those acclimated at 25 degrees C. In contrast, heat tolerance was not influenced by acclimation temperature. Low temperature acclimation was associated with the increase in proportion of ethanolamine (from 52.7% to 58.5% in 25 degrees C-acclimated versus 15 degrees C-acclimated flies, respectively) at the expense of choline in GPLs. Relatively small, but statistically significant changes in lipid molecular composition were observed with decreasing acclimation temperature. In particular, the proportions of glycerophosphoethanolamines with linoleic acid (18:2) at the sn-2 position increased. No overall change in the degree of fatty acid unsaturation was observed. Thus, cold tolerance but not heat tolerance was influenced by preimaginal acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster.  相似文献   

12.
Mortality data for non-acclimated and acclimated 3rd instar larvae and mid-term eggs of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) were obtained after immersing in hot water at 46 °C. Acclimation consisted of holding the larvae and eggs at 35 °C for 20 and 11 h respectively just prior to heat-treatment. The median lethal time (LT50) for acclimated larvae was found to be 6.9 min compared to 2.5 min for non-acclimated larvae. LT99.999 for acclimated larvae was 20.9 min compared to 8.7 min for non-acclimated larvae. LT50 for acclimated eggs was 5.0 min compared to 2.4 min for non-acclimated eggs. LT99.999 for acclimated eggs was 26.0 min compared to 6.6 min for non-acclimated eggs. For 3rd instar larvae, most acclimation effect on mortality had occurred by 8 h. A notable residual response was present 20 h after acclimation had occurred, reducing mortality at 46 °C for 4.5 min by roughly 25%. Mortality data at 46 °C were also obtained for non-acclimated and acclimated late instar larvae of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). With this species, LT50 for acclimated larvae was 2.5 min compared to 1.1 min for non-acclimated larvae. LT99.999 for acclimated larvae was 9.5 min compared to 4.6 min for non-acclimated larvae.  相似文献   

13.
The major objective of this study is to understand the upper thermal limits and potential impact of temperature elevation on copepods caused by coastal power plants. Laboratory experiments were designed to evaluate the upper incipient lethal temperature (UILT) and critical thermal maximum (CTMax) of eight coastal copepod species collected from a subtropical bay in spring and summer. The 48h-UILT of copepods acclimatized at 16.0, 20.0, 28.0 °C were 26.4-29.1, 27.3-30.1, 32.9-36.9 °C, respectively. And the CTMax of copepods acclimatized at 28.0 °C was 35.80-41.03 °C. The UILT of copepods increased significantly with rising acclimatization temperatures, but the difference values between UILT and acclimatization temperatures decreased, which indicated that the seawater temperature elevation induced the growing mortalities of copepods with increasing natural seawater temperatures from the thermal addition of power plants. The results also showed that estuarine copepods had more tolerances to the thermal stress than those from other more stable marine environments. As to the calanoid copepod species, there was a significant negative correlation between the CTMax and body length (p < 0.01). So it seemed that the copepod species with large body size were more sensitive to the thermal addition than the smaller ones. Thus, owing to the temperature increase, the copepod species diversity might reduce and the composition of copepod communities might tend to be small-sized in natural sea areas close to the coastal power plants.  相似文献   

14.
Canadian and French laboratory strains of Sitophilus granarius (L.) and Cryptolestes ferrugineus (Stephens) were cold acclimated by placing adults at 15, 10 and 5 degrees C successively for 2wk at each temperature before deacclimating them for 1wk at 30 degrees C. Unacclimated S. granarius had an LT(50) (lethal time for 50% of the population) of 12days at 0 degrees C compared with 40days after the full cold acclimation. At -10 degrees C, unacclimated C. ferrugineus had an LT(50) of 1.4days compared with 24days after the full acclimation. Cold acclimation was lost within a week after returning insects to 30 degrees C. Trehalose, as well as the amino acids proline, asparagine, glutamic acid and lysine were higher in cold acclimated insects for both species. For S. granarius, glutamine was higher in cold acclimated insects and isoleucine, ethanolamine and phosphoethanolamine, a precursor of phospholipids, were lower in cold acclimated insects. For C. ferrugineus, alanine, aspartic acid, threonine, valine, isoleucine, leucine, phenylalanine and phosphoethanolamine were higher in cold acclimated insects. For both species tyrosine was lower in cold acclimated insects. There were small but significant differences between Canadian and French strains of S. granarius, with the Canadian strain being more cold hardy and having higher levels of trehalose. There were small but significant differences between male and female S. granarius, with males being more cold hardy and having higher levels of proline, asparagine and glutamic acid. In conclusion, high levels of trehalose and proline were correlated with cold tolerance, as seen in several other insects. However, correlation does not prove that these compounds are responsible for cold tolerance, and we outline further tests that could demonstrate a causal relationship between trehalose and proline and cold tolerance.  相似文献   

15.
Leaf death due to freezing was examined for four, co-occurring species of chaparral shrubs from the Santa Monica Mountains of southern California, Rhus laurina (= Malosma laurina), R. ovata, Ceanothus megacarpus, and C. spinosus. Measurements were made on seedlings vs. adults for all species, and for Rhus spp. in winter vs. summer, and at a warm vs. a cold site. We used four methods to determine the temperature for 50% change in activity or cell death (LT(50)) of leaves: (1) electrical conductivity (electrolyte leakage into a bathing solution), (2) photosynthetic fluorescent capacity (Fv/Fm), (3) percentage of palisade mesophyll cells stained by fluorescein diacetate vital stain, and (4) visual score of leaf color (Munsell color chart). In all four species seedlings were found to be more sensitive to freezing temperatures than were adults by 1°-3°C. For adults the LT(50) ranged from -5°C for Rhus laurina in the summer to -16°C for Rhus ovata in the winter. The LT(50) of R. ovata located at a colder inland site was 4C lower than R. ovata at the warmer coastal site just 4 km apart, suggesting ecotypic differences between R. ovata at the two sites. Both R. laurina and R. ovata underwent significant winter hardening. At the cold site, R. ovata acclimated by 6°C on average, while R. laurina acclimated by only 3°C. These results were consistent with species distributions and with field observations of differential shoot dieback between these two congeneric species after a natural freeze-thaw event in the Santa Monica Mountains.  相似文献   

16.
The drugstore beetle, Stegobium paniceum (L.) (Coleoptera: Anobiidae), is a pest of stored medicinal and aromatic plants. Generally, mortality of each stage increased with an increase of temperature and exposure time. Heat tolerance for different stages from highest to lowest was young larvae, old larvae, eggs, adult, and pupae. The mortality after 7 h at 42 degrees C for young larvae, old larvae, eggs, adults, and pupae, respectively, was 16 +/- 5, 31 +/- 6, 48 +/- 3, 63 +/- 8, and 86 +/- 2% (mean +/- SEM). Similar trends for stage specific mortality were seen with the lethal time for 90% mortality (LT90) at 42 degrees C; 773, 144, 12, and 11 h for old larvae, eggs, adults, and pupa respectively. Mortality was too low with young larvae to estimate LT90. The LT90 for young larvae at 42, 45, 50, 55, and 60 degrees C was 25, 20, 3.9, 0.18, and 0.08 h, respectively. The cold tolerance of different stages at 0 degree C from highest to lowest was adults, old larvae, young larvae, pupae, and eggs. The LT90 at 0 degrees C was 298, 153, 151, 89, and 53 h, respectively. The LT90 for adults at 5, -5, -10, and -15 degrees C was 792, 58, 2, and 0.8 h, respectively. The supercooling point of adults was -15.2 +/- 2 degrees C; young larvae, -9.0 +/- 0.8 degrees C; old larvae, -6.5 +/- 0.5 degrees C; and pupae, -4.0 +/- 1.4 degrees C. Heat treatments that control young larvae should control all other stages of S. paniceum. Cold treatments that control adults should control all other stages of S. paniceum. Dried plants stored at 5 degrees C for 45 d or 42 degrees C for 30 h and then kept below 18 degrees C throughout the rest of the year, should remain pest-free without any chemical control.  相似文献   

17.
The effects of acclimation temperature (30 degrees, 20 degrees, and 15 degrees C) and swimming speed on the aerobic fuel use of the Nile tilapia (Oreochromis niloticus; 8-10 g, 8-9-cm fork length) were investigated using a respirometric approach. As acclimation temperature was decreased from 30 degrees C to 15 degrees C, resting oxygen consumption (Mo2) and carbon dioxide excretion (Mco2) decreased approximately twofold, while nitrogenous waste excretion (ammonia-N plus urea-N) decreased approximately fourfold. Instantaneous aerobic fuel usage was calculated from respiratory gas exchange. At 30 degrees C, resting Mo2 was fueled by 42% lipids, 27% carbohydrates, and 31% protein. At 15 degrees C, lipid use decreased to 21%, carbohydrate use increased greatly to 63%, and protein use decreased to 16%. These patterns at 30 degrees C and 15 degrees C in tilapia paralleled fuel use previously reported in rainbow trout acclimated to 15 degrees C and 5 degrees C, respectively. Temperature also had a pronounced effect on critical swimming speed (UCrit). Tilapia acclimated to 30 degrees C had a UCrit of 5.63+/-0. 06 body lengths/s (BL/s), while, at 20 degrees C, UCrit was significantly lower at 4.21+/-0.14 BL/s. Tilapia acclimated to 15 degrees C were unable or unwilling to swim. As tilapia swam at greater speeds, Mo2 increased exponentially; Mo2min and Mo2max were 5.8+/-0.6 and 21.2+/-1.5 micromol O2/g/h, respectively. Nitrogenous waste excretion increased to a lesser extent with swimming speed. At 30 degrees C, instantaneous protein use while swimming at 15 cm/s ( approximately 1.7 BL/s) was 23%, and at UCrit (5.6 BL/s), protein use dropped slightly to 17%. During a 48-h swim at 25 cm/s (2.7 BL/s, approximately 50% UCrit), Mo2 and urea excretion remained unchanged, while ammonia excretion more than doubled by 24 h and remained elevated 24 h later. These results revealed a shift to greater reliance on protein as an aerobic fuel during prolonged swimming.  相似文献   

18.
The thermoregulatory behavior of Hemigrapsus nudus, the amphibious purple shore crab, was examined in both aquatic and aerial environments. Crabs warmed and cooled more rapidly in water than in air. Acclimation in water of 16 degrees C (summer temperatures) raised the critical thermal maximum temperature (CTMax); acclimation in water of 10 degrees C (winter temperatures) lowered the critical thermal minimum temperature (CTMin). The changes occurred in both water and air. However, these survival regimes did not reflect the thermal preferences of the animals. In water, the thermal preference of crabs acclimated to 16 degrees C was 14.6 degrees C, and they avoided water warmer than 25.5 degrees C. These values were significantly lower than those of the crabs acclimated to 10 degrees C; these animals demonstrated temperature preferences for water that was 17 degrees C, and they avoided water that was warmer than 26.9 degrees C. This temperature preference was also exhibited in air, where 10 degrees C acclimated crabs exited from under rocks at a temperature that was 3.2 degrees C higher than that at which the 16 degrees C acclimated animals responded. This behavioral pattern was possibly due to a decreased thermal tolerance of 16 degrees C acclimated crabs, related with the molting process. H. nudus was better able to survive prolonged exposure to cold temperatures than to warm temperatures, and there was a trend towards lower exit temperatures with the lower acclimation (10 degrees C) temperature. Using a complex series of behaviors, the crabs were able to precisely control body temperature independent of the medium, by shuttling between air and water. The time spent in either air or water was influenced more strongly by the temperature than by the medium. In the field, this species may experience ranges in temperatures of up to 20 degrees C; however, it is able to utilize thermal microhabitats underneath rocks to maintain its body temperature within fairly narrow limits.  相似文献   

19.
Cold resistance in Antarctic angiosperms   总被引:9,自引:0,他引:9  
Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) are the only two vascular plants that have colonized the Maritime Antarctic. The primary purpose of the present work was to determine cold resistance mechanisms in these two Antarctic plants. This was achieved by comparing thermal properties of leaves and the lethal freezing temperature to 50% of the tissue (LT50). The grass D. antarctica was able to tolerate freezing to a lower temperature than C. quitensis. The main freezing resistance mechanism for C. quitensis is supercooling. Thus, the grass is mainly a freezing‐tolerant species, while C. quitensis avoids freezing. D. antarctica cold acclimated; thus, reducing its LT50. C. quitensis showed little cold‐acclimation capacity. Because day length is highly variable in the Antarctic, the effect of day length on freezing tolerance, growth, various soluble carbohydrates, starch, and proline contents in leaves of D. antarctica growing in the laboratory under cold‐acclimation conditions was studied. During the cold‐acclimation treatment, the LT50 was lowered more effectively under long day (21/3 h light/dark) and medium day (16/8) light periods than under a short day period (8/16). The longer the day length treatment, the faster the growth rate for both acclimated and non‐acclimated plants. Similarly, the longer the day treatment during cold acclimation, the higher the sucrose content (up to 7‐fold with respect to non‐acclimated control values). Oligo and polyfructans accumulated significantly during cold acclimation only with the medium day length treatment. Oligofructans accounted for more than 80% of total fructans. The degrees of polymerization were mostly between 3 and 10. C. quitensis under cold acclimation accumulated a similar amount of sucrose than D. antarctica, but no fructans were detected. The suggestion that survival of Antarctic plants in the Antarctic could be at least partially explained by accumulation of these substances is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号