首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金普诺安蛋白质工程技术(北京)有限公司是中美合资创办的以研发、生产基因重组蛋白质为主导业务的高科技公司。我们的主要业务之一是为国内外客户合同生产基因重组蛋白质。我们已经优化的基因重组蛋白质表达平台包括一大肠杆菌、毕赤酵母、悬浮昆虫细胞、悬浮哺乳动物细胞CHO和HEK 293。不论您的基因来源如何,我们都可在上述五个系统中找到合适的表达、纯化方法,  相似文献   

2.
金普诺安蛋白质工程技术(北京)有限公司是中美合资创办的以研发、生产基因重组蛋白质为主导业务的高科技公司。我们的主要业务之一是为国内外客户合同生产基因重组蛋白质。我们已经优化的基因重组蛋白质表达平台包括一大肠杆菌、毕赤酵母、悬浮昆虫细胞、悬浮哺乳动物细胞CHO和HEK293。不论您的基因来源如何,我们都可在上述五个系统中找到合适的表达、纯化方法,使您免去组建团队、  相似文献   

3.
中国仓鼠卵巢(Chinese hamsters ovary,CHO)细胞是目前重组蛋白质生产的首选宿主细胞。利用CHO细胞生产重组蛋白质,启动子是启动转基因转录的关键。核心启动子是RNA聚合酶与转录起始复合物集合的部位,分为集中型和分散型两种类型。目前,CHO细胞常用的启动子为病毒启动子、异源启动子、内源性和诱导性启动子等。也可以利用合成生物学及相关的数据库,人工设计合成启动子及鉴定新型启动子。本文综述了CHO细胞常用的启动子以及人工设计的合成启动子在CHO细胞中重组蛋白质表达方面的进展,为哺乳动物细胞选择合适的启动子,保证蛋白质表达量最大化,并确保长时间表达稳定性提供参考。  相似文献   

4.
中国仓鼠卵巢(Chinese hamsters ovary,CHO)细胞是目前重组蛋白质生产的首选宿主细胞。利用CHO细胞生产重组蛋白质,启动子是启动转基因转录的关键。核心启动子是RNA聚合酶与转录起始复合物集合的部位,分为集中型和分散型两种类型。目前,CHO细胞常用的启动子为病毒启动子、异源启动子、内源性和诱导性启动子等。也可以利用合成生物学及相关的数据库,人工设计合成启动子及鉴定新型启动子。本文综述了CHO细胞常用的启动子以及人工设计的合成启动子在CHO细胞中重组蛋白质表达方面的进展,为哺乳动物细胞选择合适的启动子,保证蛋白质表达量最大化,并确保长时间表达稳定性提供参考。  相似文献   

5.
我们已经建造了带有两个不同的人生长激素(hGH)基因的SV40重组体。用这些重组体感染的猴肾细胞能合成、加工并分泌人生长激素。有着与克隆的人生长激素互补DNA(eDNA)同样编码序列的基因1,共产物从几个标准来看,与垂体hGH没有什么区别。预定编码一个变异蛋白质的基因2,其产物比垂体hGH的免疫反应活性要小,但能有效地与hGH细胞表面受体结合。这些结果表明,基因2有可能表达而产生我们以前未辨别的hGH形式。这些结果显示了在真核细胞中,用基因转移的方法产生成熟的激素是可能的。这些结果也证明了SV40—猴细胞系统可以用于生产和鉴定动物细胞分泌的蛋白质。  相似文献   

6.
重组蛋白质的过表达常导致其在胞内发生错误折叠和聚集,形成被称为包含体的聚集体。因此,蛋白质复性是许多基因重组蛋白质药物生产过程的重要步骤。本文简要介绍包含体提取、纯化和溶解工艺,重点阐述蛋白质复性技术,包括稀释复性、稀释添加剂、人工分子伴侣、柱色谱复性和反胶团溶解复性等。最后展望蛋白质复性技术的发展和应用,特别是荷电介质对同电荷蛋白质复性的促进作用。  相似文献   

7.
基国拼接(或者说DNA重组)技术是刚露锋芒的生物技术工业的主要支柱。利用这一技术人们已经开始以工业的规模生产对人类有重要意义的蛋白质,如胰岛素、干扰素以及各种重要酶类等。然而应用重组DNA技术存在着一些难以解决的问题。首先是生产成本问题。因为这一技术涉及了强迫细菌或其它细胞生产我们所需要的而它们本身并不需要的蛋白质。而在这一过程中,细菌或其它细胞不可避免地也同时生产了它们自己需要的蛋白质。这样,我们就需从数百种蛋白质中分离提纯我们所希望的一种。  相似文献   

8.
现代生物医药的发展越来越依赖大分子药物的开发与应用,其中蛋白质药物所占的比重越来越高,生产需求进一步加大.重组蛋白质技术作为一种方便的蛋白质生产来源,日益得到广泛运用.重组蛋白质纯化过程中往往使用到融合亲和纯化标签,然而这些冗余的标签在蛋白质精细化生产中,尤其是作为蛋白质医药存在时,是必须被予以去除的.切割蛋白酶发挥着不可替代的作用.本文就现有的各种常用切割蛋白酶进行比较和总结,为重组蛋白质生产与科研者提供参考.  相似文献   

9.
基因工程是分子水平上的遗传工程。它主要运用重组DNA技术,在特殊酶的作用下,在体外人工连接来自不同生物体的目的基因于有自主复制能力的载体(质粒)DNA中,建成重组DNA的质粒:将此重组质粒送入受体生物细胞去复制和表达,达到遗传物质的转移,产生所需蛋白质。重组DNA技术的主要环节有:目的基因的分离或克隆、体外重组、载体传递或转染和复制、受体细胞繁殖和表达、蛋白质提纯和制备等。基因工程的最大特点是,打破了生物种间界限,使微生物、动植物、甚至人类之间的遗传物质可以互相转移和重组。  相似文献   

10.
在论述蛋白工程基本概念和定义的基础之上,介绍了蛋白质工程的主要内容,着重介绍了基因重组和分子生物学等贩新技术在蛋白工程的应用,最后还介绍了蛋白质工程在生物制药方面的应用情况。  相似文献   

11.
采用PCR技术扩增细菌酸性植酸aPPA2基因ORF序列,其DNA分子为1 299 bp,编码432氨基酸,蛋白质分子量约为48 kD a。此植酸酶基因被克隆到pEGFP-N3表达载体的BamH1和Pst1克隆区域,重组的pEG-FP-aPPA2重组质粒经转化到哺乳类培养细胞COS7中。重组的pEGFP-N3-aPPA2在COS7细胞中正常表达并检测出高的植酸酶活性。本研究提出的pEGFP-N3-aPPA2重组质粒构建和在哺乳类COS7细胞表达体系为植酸酶生产提供了新的技术线路。  相似文献   

12.
生产重组医用蛋白质的三种途径   总被引:1,自引:0,他引:1  
生产重组医用蛋白质的三种途径寿思明(河南医科大学病理教研室,郑州450052)关键词重组蛋白转基因动物转基因植物重组蛋白质在医学、生物学的研究和应用中用得越来越多,随着基因工程技术的不断进步、成熟和完善,发展出多种不同的重组蛋白质生产方法。微生物、动...  相似文献   

13.
重组DNA技术的新进展已为研究特定的动物基因开辟了一条进途径。由于几个理由,我们选择了胶原蛋白基因作为研究基因结构和调节的模型。这个基因编码了一组有趣的蛋白质,在动物组织中,这些蛋白质是细胞外基质的主要成份,其主要功能是为细胞之间相互接触提供一个结构骨架。  相似文献   

14.
重组DNA技术通过克隆的(即设计的)基因在适当宿主细胞中的表达,为大量生产从前难得的或全新的蛋白质的生产提供了可能性。最近已经明确,细菌表达系统常不适合复杂的真核蛋白,但引入哺乳动物细胞的基因的高水平表达,意味着动物细胞的大量发酵能为有价值的蛋白质的生产提供另一种重要的途径。  相似文献   

15.
利用5L生物反应器悬浮培养HEK-293N3S细胞生产携带绿色荧光蛋白基因的重组腺病毒(recombinant adenovirus-greenfluorescent protein,Ad-GFP),为规模化生产腺病毒基因药物建立一种稳定可行的生产工艺。复苏的种子细胞进行逐级放大最后接入5L搅拌式生物反应器中,采用含5%胎牛血清(FBS)的DMEM/F12培基灌流培养293N3S细胞,当细胞密度达到(2~4)×106个/mL时感染Ad-GFP,48h后收获细胞,经两步氯化铯超速离心获得纯化的Ad-GFP。采用紫外分光光度计比色法和高压液相色谱法(HPLC)测定病毒颗粒数和纯度,采用组织培养半数感染剂量(TCID50)法检测腺病毒的感染滴度。连续培养10~12d,细胞密度可达到(2~4)×106个/mL左右,纯化的Ad-GFP感染滴度和颗粒数分别为1.0×1011IU/mL和1.68×1012VP/mL,比活性为6.0%,A260/A280比值为1.33,产品纯度达到99.2%。建立了5L生物反应器悬浮培养293N3S细胞生产重组腺病毒Ad-GFP的生产工艺,对携带其他基因的重组腺病毒药物生产具有一定的指导意义。  相似文献   

16.
目的:通过对贴壁培养CHO细胞筛选驯化,得到高表达的细胞后进行悬浮培养生产重组人促红细胞生成素(rHuEPO)。方法:利用96孔板和24孔板对CHO细胞进行筛选,得到高表达细胞株后进行驯化,使其适合悬浮培养,经过摇瓶扩增后接种到生物反应器中无血清培养,每天监测葡萄糖含量,测rHuEPO表达量。结果:悬浮培养CHO细胞生产rHuEPO,生产周期短,表达量比贴壁培养高出很多,操作方便,减少污染,易于放大,并建立了适合悬浮培养的CHO细胞株,为工业化悬浮培养CHO细胞生产rHuEPO提供了技术基础。结论:经过工艺优化后利用无血清悬浮培养生产促红细胞生成素平均表达量较贴壁培养高,生产周期短,有利于降低生产成本。  相似文献   

17.
Whitehead生物医学研究所的Richard A.Yonng在1986年1月9日《自然》杂志上报导:经过基因重组在大肠杆菌里表达的麻风病菌主要蛋白质抗原能够为人T-细胞所识别。有关基因重组和表达的工作是他去年完成的,已发表在1985年8月1日《自然》杂志上。  相似文献   

18.
包含体内重组蛋白质的复性   总被引:2,自引:0,他引:2  
具有临床、工业生产、药用功能的真核生物蛋白质的供给常常受到其天然来源的限制。可喜的是基因工程技术的发展使许多真核生物蛋白质能在细菌细胞中进行表达[1] 。大肠杆菌由于培养和基因操作容易而成为最受欢迎的表达系统 ,但是重组蛋白质在大肠杆菌中的高水平表达常常导致以包含体形式存在的胞內聚集的变性蛋白质的形成。这种变性蛋白质的量可高达总的重组蛋白质量的95%。由于以包含体形式存在的聚集蛋白质分子不具有正确的三维结构 (天然结构 ) ,它们在水溶液中通常不溶解且没有活性 ,因此大肠杆菌中包含体的形成就意味着可溶性重组蛋白…  相似文献   

19.
FLAG融合短肽在重组蛋白质纯化中的应用   总被引:2,自引:0,他引:2  
FLAG融合标签由八个氨基酸组成(AspTyrLysAspAspAspAspLys),专门设计用于重组蛋白质的免疫吸附纯化。现已发展出了多个针对该短肽的抗体,包括M1、M2和M5单克隆抗体。FLAG标签与融合的重组蛋白质之间一般含有一个肠激酶切割位点,可以用肠激酶切割除去。FLAG融合标签技术具有简单、快速进行定量检测的优点,在重组蛋白质的分离纯化中应用广泛。  相似文献   

20.
定向进化是改造蛋白质分子的一种有效的新策略。主要是在实验室里模拟自然进化过程,通过由易错PCR、致突变菌株诱变等方法对编码蛋白质的基因进行随机诱变,由DNA改组、随机引导重组和交错延伸等方法进行突变基因体外重组,设计高通量筛选方法来选出需要的突变株。它不仅可快速产生工业上有用的新酶,而且对研究蛋白质的结构与功能的关系具有非常重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号